

REV. 0 0003

Contamination Assessment Report for Site G300

at

Coastal Systems Station

Panama City, Florida

Southern Division Naval Facilities Engineering Command

Contract Number N62467-94-D-0888
Contract Task Order 0027

August 1997

CONTAMINATION ASSESSMENT REPORT FOR SITE G300

COASTAL SYSTEMS STATION PANAMA CITY, FLORIDA

ME'D AVG 25 1997

Submitted to:
Southern Division
Naval Facilities Engineering Command
2155 Eagle Drive
North Charleston, South Carolina 29406

Submitted by:
Brown & Root Environmental
661 Anderson Drive
Foster Plaza 7
Pittsburgh, Pennsylvania 15220

CONTRACT NUMBER N62467-94-D-0888 CONTRACT TASK ORDER 0027

AUGUST 1997

PREPARED BY:

GERALD F. GOODE

SENIOR HYDROGEOLOGIST -

BROWN & ROOT ENVIRONMENTAL

TALLAHASSEE, FL

REVIEWED BY:

PAUL E. CALLIGAN, F.G. TASK ORDER MANAGER

FLORIDA LICENSE No. PG-0001864

BROWN & ROOT ENVIRONMENTAL

TALLAHASSEE, FLORIDA

ARPROVED FOR SUBMITTAL BY:

DEBBIE WROBLEWSKI PROGRAM MANAGER

BROWN & ROOT ENVIRONMENTAL

PITTSBURGH, PENNSYLVANIA

E. CALLIGENS. CONTROL OF STATE OF STATE

1

(904) 656-5458 FAX: (904) 656-7403 CG CA06998 CG C015768

BRE/TLH-97-659/7540/7.2.3

11 August, 1997

Project Number 7540

Mr. John Mitchell Remedial Project Manager Florida Department of Environmental Protection Twin Towers Office Building 2600 Blair Stone Road Tallahassee. Florida 32399-2400

Reference:

Clean Contract No. N62467-94-D0888

Contract Task Order No. 0027

Subject:

Contamination Assessment Report for Site G300, Coastal Systems Station

Panama City, Florida

Dear Mr. Mitchell:

On behalf of the Department of the Navy, Southern Division, Naval Facilities Engineering Command, (SOUTHDIV), Brown & Root Environmental is pleased to submit for your review and approval, two copies of the Contamination Assessment Report (CAR) for Site G300, Coastal Systems Station.

If you have any questions regarding this assessment or require additional information, please contact me at (904) 656-5458.

Very truly yours,

Paul E. Calligan, P.G. Task Order Manager

PC/wm

Enclosures (2)

C:

Mr. Nick Ugolini, SOUTHDIV

Ms. D. Evans-Ripley, SOUTHDIV (w/o enclosure) Lieutenant David Robillard, Coastal Systems Station Mr. Arturo McDonald, Coastal Systems Station

Ms. D. Wroblewski (w/o enclosure)

Mr. A. Kendrick

EXECUTIVE SUMMARY

Brown & Root Environmental (B&R Environmental) has completed a Contamination Assessment (CA) at the above-referenced facility in accordance with the requirements of Chapter 62-770, Florida Administrative Code (FAC). The assessment report was submitted to the Florida Department of Environmental Protection (FDEP) for approval.

B&R Environmental performed the following tasks during the CA:

- Reviewed available Navy documents to identify potential sources and receptors for petroleum hydrocarbons in the vicinity, to evaluate private potable wells in a 0.25-mile radius and public water supply wells within a 0.50-mile radius, to locate nearby surface water bodies, and to determine surface hydrology and drainage;
- Reviewed previously prepared Closure Assessment for Tank G300 to determine appropriate boring locations and monitoring well placements;
- Conducted site survey to identify utilities and to construct a site plan;
- Performed direct push investigation which included the installation of 15 soil borings for collecting soil and groundwater samples for field screening of total petroleum hydrocarbons - diesel range organics (TPH-DRO) using a gas chromatograph.
- Installed four shallow permanent monitoring wells to approximately 15 feet below land surface (bls) and installed four shallow piezometer wells to approximately 14 feet bls.
- Collected groundwater samples from the permanent monitoring wells for laboratory analysis of the Kerosene Analytical Group parameters;
- Collected three soil samples for laboratory analysis of the Kerosene Analytical Group parameters;
- Surveyed monitoring well top of casing elevations and collected depth to groundwater measurements to evaluate the groundwater flow direction and gradient;
- Performed slug testing on three monitoring wells to evaluate the hydraulic conductivity of the surficial aquifer; and

Laboratory analytical results for groundwater samples indicate that the dissolved hydrocarbon concentrations meet the criteria established for No Further Action (NFA), as established in the FDEP's, October 1990, "No Further Action and Monitoring Only Guidelines for Petroleum Contaminated Sites", for all constituents of the Kerosene Analytical Group.

Evaluation of soil assessment data indicates that "excessively contaminated" soil, as defined by Chapter 62-770.200, FAC, is present at the site. The areal extent of the excessively contaminated soil is limited to

-<u>.</u> .7€ . ξ

a small area adjacent to the southwest corner of building 300, and extends approximately 3 to 4 feet below the building footer. The proximity to the building footer makes it impracticable to remove the soil without adversely impacting the structural integrity of the building.

Although the dissolved hydrocarbon concentrations meet the criteria established for NFA, the site does not qualify for NFA due to the presence of excessively contaminated soil. Since it is impracticable to remove the excessively contaminated soil, it is recommended that a Monitoring Only Program (MOP) be implemented at the site. The MOP should include 6 months of monitoring for Total Volatile Organics and Polynuclear Aromatic Hydrocarbons.

TABLE OF CONTENTS

<u>SECTION</u>		PAGE
EXECUTIVE	E SUMMARY	ES-
1.0 INTRO	DUCTION	1-1
1.1 PURPO	SE AND SCOPE	1-1
1.2	SITE DESCRIPTION	1-2
1.2.1	Location	1-2
1.2.2	Topography and Drainage	1-2
1.2.3	Regional Hydrogeology	1-2
1.2.4	Land Use	1-5
1.2.5	Site Description	1-5
1.2.6	Potable Water Well Survey	1-9
1.3	SITE HISTORY AND OPERATIONS	1-12
1.3.1	Site History	1-12
1.3.2	Structural Integrity of Tanks and Lines	1-13
1.3.3	Initial Remedial Action	1-13
1.3.4	Previous Investigations	1-13
2.0 SUBSU	JRFACE INVESTIGATION METHODS	2-1
2.1	QUALITY ASSURANCE	2-1
2.2	SOIL BORINGS PROCEDURES	2-1
2.2.1	Direct-Push Soil Borings	2-1
2.2.2	Drilling and Soil Sampling Methods	2-2
2.3	WELL CONSTRUCTION	2-6
2.3.1	Piezometer Construction	2-6
2.3.2	Monitoring Well Construction	2-6
2.4	LITHOLOGIC SAMPLING	2-7
2.5	SOIL VAPOR ANALYSIS	2-7
2.6	SOIL SAMPLING	2-7
2.7	HYDROLOGIC INVESTIGATION	2-8
2.7.1	Water Level Measurements	2-8

TABLE OF CONTENTS (Continued)

SE	CTION		PAGE
	2.7.2	Aquifer Characteristics	2-8
	2.7.3	Groundwater Flow Velocity and Transmissivity	2-9
	2.7.4	Tidal Influence Survey	2-10
	2.8	WATER SAMPLING	2-10
	2.8.1	Free Product Sampling	2-10
	2.8.2	Groundwater Sampling Direct-Push Investigation	2-10
	2.8.3	Groundwater Sampling of Monitoring Wells	2-11
3.0	RESULT	rs of investigation	3-1
	3.1	SITE HYDROGEOLOGY	3-1
	3.1.1	Lithology	3-1
	3.1.2	Aquifer Characteristics and Classification	3-1
	3.1.3.	Tidal Influence	3-5
	3.2	SOIL QUALITY	3-5
	3.3	WATER QUALITY	3-9
4.0	DISCUS	SSION	4-1
5.0	CONCL	USIONS AND RECOMMENDATION	5-1
6.0	REFERI	ENCES	6-1

TABLE OF CONTENTS (Continued)

SECTION	PAGE
APPENDICE	<u>:S</u>
Α	DISCHARGE NOTIFICATION FORM AND FDEP CORRESPONDENCESA-1
В	CAR SUMMARY SHEETB-1
С	TANK CLOSURE ASSESSMENT REPORT
D	FUEL SPILL INVESTIGATION REPORT
Ε	SOIL BORING LOGSE-1
F	HEADSPACE METHODOLOGY FOR DETERMINING SOIL ORGANIC VAPOR
	CONCENTRATIONSF-1
G	PRE-BURN SOIL LABORATORY DATA SHEETSG-1
н	WELL COMPLETION LOGSH-1
1	FIELD SCREENING TPH-DRO DATA SHEETS FOR GROUNDWATER AND
	SOILI-1
J	SOIL LABORATORY DATA SHEETSJ-1
K	FIELD MEASUREMENTS AND SAMPLING FORMSK-1
L	SLUG TEST DATA AND HYDRAULIC CONDUCTIVITY CALCULATIONSL-1
M	GROUNDWATER GRADIENT, GROUNDWATER FLOW, AND TRANSMISSIVITY
	CALCULATIONSM-1
N	GROUNDWATER LABORATORY DATA SHEETSN-1
	TABLES
NUMBER	<u>PAGE</u>
2-1 SOIL VA	POR MEASUREMENTS COASTAL SYSTEMS STATION2-4
3-1 DEPTH	TO GROUNDWATER MEASUREMENTS3-3
3-2 SUMMA	RY OF SOIL QUALITY: SELECTED PARAMETERS FROM THE KEROSENE
ANALY	TICAL GROUP3-11
3-3 SUMMA	RY OF GROUNDWATER QUALITY: SELECTED PARAMETERS FROM THE
KEROSI	ENE ANALYTICAL GROUP3-19
5-1 MAXIMU	JM ACCEPTABLE GROUNDWATER CONSTITUENT LEVELS5-3

iii

FIGURES

<u>NUMBER</u>	<u>PAGE</u>
1-1 SITE VICINITY MAP	1-3
1-2 SITE LOCATION	1-4
1-3 BASE SITE LOCATION MAP	1-7
1-4 SITE PLAN	1-8
1-5 LOCATION OF PUBLIC WATER SUPPLY WELLS	1-11
2-1 SOIL BORING & MONITORING WELL LOCATION MAP	2-3
3-1 WATER-TABLE ELEVATION CONTOUR MAP (APRIL 23, 1997)	3-4
3-2 SOIL VAPOR CONCENTRATION (FID) MAP	3-7
3-3 TPH-DRO CONCENTRATION IN SOIL	3-8
3-4 TPH-DRO CONCENTRATION IN GROUNDWATER	3-12
3-5 BENZENE AND TOTAL VOA CONCENTRATIONS IN GROUNDWATER (APRIL	_ 23, 1997)3-13
3-6 NAPHTHALENE AND TOTAL NAPHTHALENE CONCENTRATIONS IN GROUI	NDWATER
(APRIL 23, 1997)	3-16
3-7 TRPH CONCENTRATIONS IN GROUNDWATER (APRIL 23, 1997)	3-17
3-8 TOTAL LEAD CONCENTRATIONS IN GROUNDWATER (APRIL 23, 1997)	3-18

1.0 INTRODUCTION

1.1 PURPOSE AND SCOPE

A Contamination Assessment (CA) was conducted by Brown and Root Environmental (B&R Environmental) for the US Navy (Navy) Southern Division Naval Facilities Engineering Command under Contract Task Order 0008, for the Comprehensive Long-term Environmental Action Navy (CLEAN III), Contract Number N62467-94-D-0888. The CA was conducted at Site G300 located at the Coastal Systems Station (CSS) in Panama City, Florida. The Florida Department of Environmental Protection (FDEP) Facility Identification Number is 038518667.

The purpose of this CA was to determine the nature and extent of petroleum hydrocarbon impacted soil and groundwater in accordance with the requirements of Chapter 62-770, Florida Administrative Code (FAC). On September 16, 1996, a discharge of diesel fuel to the ground surface was identified near the vent lines of a 150-gallon day tank used to store diesel fuel for a generator in Building 300. The discharge was identified by an inspector from the FDEP who was at the facility to oversee the removal of a 2,500-gallon underground storage tank (UST), which supplied diesel fuel to the day tank. A Discharge Notification Form was submitted to the FDEP by the CSS Environmental Department on September 17, 1996 and is included in Appendix A.

An Initial Remedial Action (IRA) was conducted to remove "excessively contaminated soil," as defined by Chapter 62-770, FAC, near the vent line for the day tank, however, the IRA was abandoned on September 23, 1996 after it became apparent that the amount of "excessively contaminated soil" may have been the result of various day tank overfills since 1972. Correspondences from the CSS Environmental Department concerning IRA removal activities are included in Appendix A. The 2,500-gallon diesel UST which had supplied diesel fuel to the day tank was removed on September 17, 1997. A Tank Closure Assessment Report was completed for the removal of the diesel UST and is provided in Appendix B.

A CAR Summary Sheet, as required by Chapter 62-770, FAC is included in Appendix C.

1.2 SITE DESCRIPTION

1.2.1 Location

The CSS facility is located on the western shore of St. Andrew Bay in Panama City, Bay County, Florida. The facility is bounded by US Highway 98 to the north, St. Andrew Bay to the east, State Road 292B (Magnolia Beach Road) to the south, and State Road 292 (Thomas Drive) to the west as shown on Figure 1-1. Specifically, the CSS facility is located within Section 33 of Township 3 South, Range 15 West and Section 4 of Township 4 South, Range 15 West, as shown on United States Geological Survey (USGS) Panama City Beach, 7.5 Minute Series Quadrangle and presented as Figure 1-2.

1.2.2 Topography and Drainage

The topography at the site is relatively flat with a ground surface which gently slopes towards the west. The site is located at an elevation of approximately 12 feet above National Geodetic Vertical Datum (NGVD). Locally, the ground surface grades toward Alligator Bayou located approximately 350 feet south of the former diesel underground storage tank (UST) system for Building 300. The altitude of the ground surface decreases by approximately 10 feet from Building 300 to Alligator Bayou.

The land surface at the area of the former diesel UST has a grass surface cover which allows rainfall to infiltrate into the subsurface. Precipitation run off drains toward a storm drain located approximately 60 feet northwest of the site. The nearest surface water body to the site is Alligator Bayou which is located approximately 350 feet south of the former diesel UST. Alligator Bayou is designated as a Class III surface water by the State of Florida, suitable for fish and wildlife propagation and water sports (ABB Environmental Services Inc., RCRA Facility Investigation (RFI) Report. 1995).

1.2.3 Regional Hydrogeology

The regional hydrogeology of CSS Panama City is described in the RFI Report (ABB Environmental Services, Inc., 1995). According to this report, surficial deposits at CSS are Pleistocene to Recent coastal plain sediments of marine and estuarine origin. They predominately consist of quartz sand, clayey sand, and gravel. These deposits vary in thickness from 70 to 100 feet in Bay County. The surficial aquifer is located within these deposits. Underlying the surficial deposits is the Intercoastal Formation of middle Miocene to late Pliocene. The Intercoastal Formation is composed of sand and poorly consolidated limestone interbedded with discontinuous clay and low permeability sandy limestone. This formation is

approximately 150 feet thick at CSS Panama City. The lower beds of the Intercoastal Formation are part of the Floridan aquifer system.

Groundwater at CSS occurs in two major aquifer systems: unconfined surficial aquifer and the Floridan aquifer system, which is under confined and artesian conditions. A third semi-confined aquifer exists in thin permeable sand and shell zones within the Intracoastal Formation, and is separated from the water table aquifer and from the Floridan aquifer system by interbedded low-permeability clay and limestone. The Intercoastal Formation does not produce enough water to be considered a significant water source. The Floridan aquifer is under confined and artesian conditions where low-permeable clays and limestone beds of the Intracoastal Formation separate the water table aquifer from the Floridan aquifer. The surficial aquifer is reported to have insufficient thickness to produce significant quantities of water and its quality is generally undesirable for human use (i.e., dissolved solids, acidity, and iron content). Low permeability clay lenses in the surficial aquifer and the Intercoastal Formation are discontinuous. The surficial aquifer may be hydraulically connected to the Floridan aquifer system through semiconfining strata of the Intercoastal Formation.

1.2.4 Land Use

Building 300 is located in the southeast area of the CSS property as shown on Figure 1-3. This area of the base is comprised of research facilities and various support activities for the Naval Experimental Dive Unit. No regulated underground storage tank systems are located at facilities adjacent to Building 300 (E.E. Jordan Company, Release Detection Program For Underground Storage Tanks, May, 1990).

1.2.5 Site Description

Site G300 contained one 2,500-gallon steel UST which stored diesel fuel. The UST supplied diesel fuel for an emergency generator located inside Building 300. The generator is located in the southwest corner of Building 300. A 150-gallon above ground day tank for the emergency generator is located inside the building. Fuel was pumped from the UST to the day tank as needed. A vent stack for the day tank extends outside the building. The vent pipe for the former UST was located immediately adjacent to the day tank vent. The UST was in service from approximately 1970 through 1996. The UST and product lines were removed on September 17, 1996, and an above ground tank was installed to store fuel for the emergency generator. The UST product line was cut, capped, and abandoned in place, where the line **Figure** 1-4. entered 1 beneath structures. Α site plan is shown as

÷± 2€ (

This page intentionally left blank.

CAD DWG. NO.: 7540CM13 PROJ. NO.: 7540

1.2.6 Potable Water Well Survey

The potable water supply information presented in this report was obtained from RFI completed for CSS (ABB Environmental Services Inc., 1995). According to this report, potable water for most of Panama City and Panama City Beach, including CSS, is supplied by surface water. Panama City Beach also uses groundwater from the Floridan aquifer system, as do private and domestic water systems throughout Bay County.

The CSS is provided potable water from the Bay County Water System, operated by the Bay County Public Utilities Department. The system draws surface water from Deer Point Lake; located 7 miles northeast of CSS. The utilization of county water in urban areas such as Panama City, has been reported at 83 to 95 percent.

Panama City Beach operates a public water system which uses a combination of groundwater withdrawal and surface water. The groundwater is obtained from 13 wells located in western Bay County and surface water is purchased from the county water system.

The RFI indicates that records from the Northwest Florida Water Management District list 42 permitted wells screened in the surficial aquifer system in the vicinity of CSS. These 42 wells are classified as "domestic" or other "public supply". The permitted wells are 2-inch and 4-inch-diameter wells with yields of generally less than 20 gallons per minute.

Four public water supply wells are located at CSS. The location of the wells are provided on Figure 1-5. These wells have 12-inch diameter casings and are completed at depths of 350 to 400 feet bls. Of the four wells, only PWS-1, located near the housing area at Building 394, adjacent to highway 98, is currently in use. It is used to provide water for air conditioning and heat pumps only and draws water from the Floridan aquifer system at approximately 400 feet bls. The remaining wells are inactive.

No private potable wells or public potable supply wells were identified in the RFI Report as being within a 1/4-mile and 1/2-mile radius of the site, respectively.

 $\tau_2 : \mathcal{H} = \xi$

This page intentionally left blank.

1.3 SITE HISTORY AND OPERATIONS

1.3.1 Site History

CSS is one of seven major research, test, and evaluation laboratories of the Space and Naval Warfare Systems Command. The site was first established in 1942 as a harbor for World War II convoy ships and as a liaison with a nearby shipyard. It later became an amphibious landing craft operations school. Research and development began in 1945 when the facility was renamed the US Navy Research Countermeasures Station. In 1952 a research and development program for the use of helicopters for mine countermeasures operations was implemented at the Base. The facility was redesignated as the Naval Coastal Systems Center in 1978 and again as Coastal Systems Station (CSS) in January 1992 (ABB Environmental Services, Inc. 1995).

The Navy Experimental Diving Unit Ocean Simulation Facility is located at Building 300. On September 7, 1996, the day tank used to store diesel fuel for an emergency generator located in the building, was overfilled during refueling of the day tank. The day tank, which has a float level and is equipped with a piping system which returns excess fuel to the source tank, could not accommodate the seven gallon per minute delivery rate of the emergency generator fuel pump, which was operated in the manual mode during the refueling of the tank. As a result, fuel was displaced into the day tank vent pipe, which extends outside Building 300, at the southwest corner of the building, approximately 10 feet above the top of the day tank. Eventually, fuel reached the end of the vent pipe, spilling to the ground at the southwest corner of Building 300 (Commanding Officer, Navy Experimental Diving Unit, 1996).

During the refueling of the tank, the pump was left unattended. Approximately one hour after the pump had been left unattended, a diesel fuel spill was discovered on the floor beneath the day tank and the pump was deactivated. Less than two quarts of diesel fuel had spilled on the floor and the spill was immediately cleaned up with absorbent pads. At the time, personnel were not aware a spill had occurred outside of Building 300. The spill outside the building was discovered on September 16, 1996, by a Florida State inspector who was at the site to inspect an unused underground storage tank which was being removed and noticed the smell at the site of the spill (Commanding Officer, Navy Experimental Diving Unit, 1996).

The Navy estimates approximately 132 gallons were spilled during the refueling of the day tank on September 7, 1996. This estimate is based on review of inventory records and fuel consumption rates for the outside diesel fuel tank from March 28, 1996 (Commanding Officer, Navy Experimental diving Unit, 1996).

1.3.2 Structural Integrity of Tanks and Lines

The UST G300 was unregulated, therefore no structural integrity testing of the tank and lines was performed on the diesel UST system. At the time the UST was removed in September 1996, the tank was observed to be in good condition. The structural integrity of the UST is described in the Tank Closure Assessment Report provided as Appendix C.

1.3.3 Initial Remedial Action

On September 20, 1996, Southern Earth Science Company of Panama City, Florida installed 17 soil borings to assess soil quality at the UST system tank field along the product line, and near the southwest corner of Building 300. Samples were collected from each of the borings for field screening with an organic vapor analyzer (OVA) The results of the field screening indicated "excessively contaminated soil," as defined by Chapter 62-770, FAC, at the southwest corner of Building 300. The soil contaminant plume was approximately 4 feet wide by 25 feet long and extended along the southwest corner of the building, sidewalk, and possibly under the building. In September 1997, an Initial Remedial Action (IRA) was performed to remove "excessively contaminated soil". During the IRA, soil excavation was halted after it became apparent the amount of "excessively contaminated soil" observed during the excavation, may have resulted from various generator day tank overfills. Figures showing the location of the soil borings and tables summarizing soil OVA sample intervals and vapor concentrations are included in the Fuel Spill Investigation Summary document provided in Appendix D.

1.3.4 Previous Investigations

During removal of the UST system, the US Navy Public Works Center (PWC) collected seven soil samples for hydrocarbon vapor screening using an organic vapor analyzer (OVA). The soil samples were collected at depths of 2 feet, 4 feet, and 8 feet bls from within the tank excavation. Soil vapor screening samples were collected from each side and the bottom of the tank excavation. Results of the soil screening identified no soil hydrocarbon vapors in soil samples collected from the vadose zone. The soil vapor sample locations and the depth of sample collection with corresponding OVA readings, are provided in Appendix C.

A temporary monitoring well was placed at the center of the UST excavation and groundwater samples were collected on March 25, 1997. Groundwater samples collected from the temporary monitoring well were analyzed using US Environmental Protection Agency (USEPA) Methods SW-846, 8260 and 8270. Results of the sampling reported no petroleum constituents above state target levels for storage tank

closure. Groundwater concentrations of chloroform, bromodichloromethane, and dibromochloromethane were reported at levels below the State of Florida Drinking Water Standards. The Storage Tank Closure Assessment Form is included in Appendix C.

4 76 4

This page intentionally left blank.

2.0 SUBSURFACE INVESTIGATION METHODS

2.1 QUALITY ASSURANCE

The site investigation was conducted in accordance with the Standard Operating Procedures prescribed by the FDEP Quality Assurance Section Document DER-001/92, and adopted by the B&R Environmental Comprehensive Quality Assurance Plan (CQAP) Number 870055G.

2.2 SOIL BORING PROCEDURES

2.2.1 Direct-Push Soil Borings

A soil hydrocarbon vapor assessment was conducted at the site by B&R Environmental on March 17 through March 21, 1997. Fifteen soil borings (SB-1 through SB-15) were advanced in the immediate area surrounding the former diesel UST system. Soil samples were collected from each boring for the purpose of organic vapor screening and for lithologic description. Soil borings were advanced using a Stratoprobe, truck mounted, direct-push, hydraulic soil probe. Soil samples were collected using two-foot long stainless steel split barrel samplers lined with plastic sleeves. Soil samples were collected at five foot intervals from the ground surface until the water table was encountered. At soil boring locations, SB-1, SB-2, SB-7, and SB-15, soil samples were collected continuously from the ground surface until the water table was encountered. Wet soils were present at depths ranging from approximately 8 to 9 feet bls. Soil boring locations and boring completion depths are summarized on Figure 2-1 and Table 2-1, respectively. Soil boring logs are provided in Appendix E.

Prior to the advancement of the soil probe at each boring location, the probe was decontaminated according to B&R Environmental's CQAP. Soil samples were visually inspected for evidence of oil staining. Soil vapor analysis was conducted on each soil sample collected from the vadose zone using an Organic Vapor Analyzer-Flame Ionization Detector (OVA-FID). Soil vapor analysis was performed in accordance with the headspace method prescribed by Chapter 62-770.200(2) FAC. This method of headspace screening is presented in detail in Appendix F. Headspace concentrations from soil vapor analysis are summarized in Table 2-1.

On April 23, 1997, B&R Environmental advanced three soil borings using a stainless steel, 3-inch, inside diameter (ID) hand-auger. The borings were advanced at locations SB01, SB04, and SB05 to collect soil samples for laboratory analysis to confirm the presence of petroleum-related compounds in the vadose zone soils. Sample locations and the depth of sample collection were based on the headspace readings obtained during the soil vapor analysis conducted during March 1997. Samples were collected at each boring location at a depth of 6 to 7 feet bls. Prior to advancing the hand-auger at each boring location, the hand-auger was decontaminated according to B&R Environmental's CQAP.

Decontamination of sampling equipment generated rinse water which was containerized in 55-gallon drums and will be removed for proper disposal by a Florida-licensed waste hauler.

2.2.2 <u>Drilling and Soil Sampling Methods</u>

On April 22, 1997, four borings, PCY-300-MW01, PCY-300-MW02, PCY-300-MW03, and PCY-300-MW04, were drilled by Gulf Atlantic Drilling under the supervision of a B&R Environmental geologist. These borings were advanced for the installation of groundwater monitoring wells. Soil grab samples collected during borehole advancement were used to characterize the site lithology and/or provide additional assessment data on soil vapor concentrations in the area. The location of the monitoring wells are shown on Figure 2-1. Soil boring logs are included in Appendix E.

Underground utilities were investigated at each boring location by advancing the soil boring with a post hole digger from 0 to 4 feet bls. The borings were continued with a truck-mounted drill rig, using 4 1/4-inch ID hollow-stem augers. Prior to the collection of the soil samples and well installations, the auger flights were decontaminated according to B&R Environmental's CQAP.

Soil vapor analysis was performed on soil grab samples in accordance with the headspace prescribed in Chapter 62-770.200(2) FAC This method of headspace screening is presented in detail in Appendix F. Hydrocarbon vapor concentrations from soil vapor analysis are summarized in Table 2-1.

Soil cuttings generated during the well installations were placed in a 55-gallon steel drums. A composite soil sample was collected from the drums and analyzed by USEPA Methods SW-846 8010 (volatile organic hydrocarbons, 8020 (volatile organic aromatics, 8100/FLPRO (polynuclear aromatic hydrocarbons and total recoverable petroleum hydrocarbons), total halides, and eight

TABLE 2-1

SOIL VAPOR MEASUREMENTS COASTAL SYSTEMS STATION SITE G300 PANAMA CITY, FLORIDA FDEP FACILITY NO. 038518667 PAGE 1 OF 2

			Headspace Readings (ppm)		
Soil Boring No.	Date of	Sample Interval	Total Organic	Carbon Filtered	Net Reading
	Measurement	(feet bis)	Reading	Reading	
SB01	03-18-97	1	ND	-	ND
	•	2	ND	-	ND
	1	4	ND	-	ND
		6	ND	-	ND
		8	ND	-	ND
SB02	03-18-97	1	ND	-	ND
		2	ND	-	ND
		4	ND	-	ND
		6	ND	-	ND
		8	ND	-	ND
SB03	03-18-97	0-1	ND	•	ND
		1-2	ND	-	ND
		5-6	ND	-	ND
		6-7	ND	-	ND
SB04	03-18-97	0-1	ND	-	ND
	1	1-2	ND	-	ND
		5-6	300	ND	300
		6-7	100	ND	100
SB05	03-18-97	0-1	ND	-	ND
		1-2	ND	-	ND
		5-6	110	ND	110
		6-7	50	ND	50
SB06	03-19-97	0-1	ND	-	ND
		1-2	ND	-	ND
		5-6	ND	-	ND
		6-7.	ND	-	ND
SB07	03-19-97	0-1	ND	-	ND
	N To	1-2	ND	-	ND
		2-3	ND	-	ND
		3-4	ND	-	ND
		5-6	2	ND	2
		6-7	ND	-	ND
SB08	03-19-97	0-1	ND	-	ND
	1	1-2	ND	- '	ND
		5-6	ND	-	ND
		6-7	ND	_	ND
SB09	03-19-97	5-6	40	ND	40
		6-7	100	ND	100

TABLE 2-1

SOIL VAPOR MEASUREMENTS COASTAL SYSTEMS STATION SITE G300 PANAMA CITY, FLORIDA FDEP FACILITY NO. 038518667 PAGE 2 OF 2

SB10 03-19-97 0-1 ND - ND ND ND SB13 03-20-97 0-1 ND - ND - ND ND SB14 03-20-97 0-1 ND - ND - ND ND - ND SB15 03-20-97 0-1 ND - ND - ND - ND SB15 03-20-97 0-1 ND - ND			···			, <u></u>
SB11	SB10	03-19-97			-	
SB11				ND	-	ND
SB11 03-20-97 0-1 ND - ND 5-6 ND - ND 6-7 ND - ND SB12 03-20-97 5-6 ND - ND SB13 03-20-97 6-7 ND - ND SB13 03-20-97 0-1 ND - ND 5-6 ND - ND - ND 6-7 ND - ND - ND 5-6 ND - ND - ND 8B14 03-20-97 0-1 ND - ND - ND 5-6 ND - ND - ND - ND SB15 03-20-97 0-1 ND - ND - ND SB15 03-20-97 0-1 ND - ND - ND SB15 03-20-97 0-1 ND <td< td=""><td></td><td></td><td>I control of the cont</td><td>ND</td><td>-</td><td>ND</td></td<>			I control of the cont	ND	-	ND
1-2			6-7	ND	-	ND
SB12 03-20-97 5-6 ND - ND ND	SB11	03-20-97	0-1	ND		ND
SB12 03-20-97 5-6			1-2	ND	-	ND
SB12 03-20-97 5-6 6-7 ND - ND SB13 03-20-97 0-1 ND - ND SB13 03-20-97 0-1 ND - ND 1-2 ND - ND ND 5-6 ND - ND ND SB14 03-20-97 0-1 ND - ND SB14 03-20-97 0-1 ND - ND SB15			5-6	ND	-	ND
SB13 03-20-97 0-1 ND - ND 1-2 ND - ND 5-6 ND - ND 6-7 ND - ND 7-8 ND - ND SB14 03-20-97 0-1 ND - ND 1-2 ND - ND - ND 5-6 ND - ND ND ND SB15 03-20-97 0-1 ND - ND ND SB15 03-20-97 0-1 <td></td> <td></td> <td>6-7</td> <td>ND</td> <td>-</td> <td>ND</td>			6-7	ND	-	ND
SB13 03-20-97 0-1 ND - ND 1-2 ND - ND	SB12	03-20-97	5-6	ND	-	ND
1-2			6-7	ND	-	ND
SB14 03-20-97 0-1 ND - ND ND SB15 03-20-97 0-1 ND - ND - ND SB15 03-20-97 0-1 ND - ND SB15 ND SB15 03-20-97 0-1 ND SB15 ND	SB13	03-20-97	0-1	ND	-	ND
Color			1-2	ND	-	ND
T-8	·		5-6	ND	-	ND
SB14 03-20-97 0-1 ND - ND 1-2 ND - ND 5-6 ND - ND SB15 03-20-97 0-1 ND - ND 1-2 ND - ND 3-4 ND - ND 5-6 ND - ND PCY-300-MW02 04-22-97 2-3 ND - ND PCY-300-MW02 04-22-97 2-3 ND - ND			6-7	ND	-	ND
1-2			7-8	ND	-	ND
SB15 03-20-97 0-1 ND - ND ND ND ND ND ND	SB14	03-20-97	0-1	ND	-	ND
SB15 03-20-97 0-1 ND - ND 1-2 ND - ND 3-4 ND - ND 5-6 ND - ND 7-8 ND - ND PCY-300-MW02 04-22-97 2-3 ND - ND 4-5 ND - ND			1-2	ND	-	ND
SB15 03-20-97 0-1 ND - ND 1-2 ND - ND 3-4 ND - ND 5-6 ND - ND PCY-300-MW02 04-22-97 2-3 ND - ND 4-5 ND - ND			5-6	ND	-	ND
1-2 ND - ND ND ND ND ND ND ND			6-7	ND	-	ND
3-4 ND - ND ND ND ND	SB15	03-20-97	0-1	ND	-	ND
5-6 ND - ND ND - ND ND - ND ND			1-2	ND	-	ND
PCY-300-MW02 04-22-97 2-3 ND - ND 4-5 ND - ND			3-4	ND	-	ND
PCY-300-MW02 04-22-97 2-3 ND - ND - ND ND		•	5-6	ND	-	ND
4-5 ND - ND			7-8	ND	-	ND
	PCY-300-MW02	04-22-97	2-3	ND	-	ND
6-7 ND - ND			4-5	ND	-	ND
			6-7	ND	-	ND

Note

= not analyzed

bls = below land surface

ppm = part per million equivalent methane

Wet soils encountered at approximately 6 to 7 feet bls.

RCRA metals. The soil will be removed for proper disposal by a Florida-licensed waste hauler. Pre-burn soil laboratory data sheets are included in Appendix G.

2.3 WELL CONSTRUCTION

2.3.1 Piezometer Construction

Piezometer wells were installed in conjunction with the soil boring procedures discussed above in Section 2.2.1. Soil borings SB-7, SB-8 and SB-10 were converted into piezometers PZ-1, PZ-2 and PZ-3, respectively. The piezometers were used to obtain water level measurements to determine relative groundwater elevations and flow direction. The piezometers were constructed of 1.25-inch ID, flush-threaded, schedule 40 PVC riser from 0 to 4 feet bls with 0.010-inch slotted screen interval from 4 to 14 feet bls. Native aquifer material was used as the filter media from 3 to 14 feet bls. A 1-foot layer of bentonite pellets was placed above the natural sand pack and hydrated. The remainder of the annulus was grouted to within 3-inches of the top of casing with a Type I Portland Cement/Bentonite slurry. The piezometers were secured with a locking water tight cap within an 8-inch diameter steel manhole. Well completion logs are provided in Appendix H.

2.3.2 Monitoring Well Construction

Monitoring wells were installed in conjunction with the soil boring procedures discussed above in Section 2.2.2. The wells were screened to intersect the water table. Monitoring well placements were selected to provide spatial coverage around the former diesel UST for groundwater sampling. Results of the sampling were used to evaluate if a dissolved hydrocarbon plume exists in the area of the former diesel UST system.

The monitoring wells were installed using a RAM 10 Deep Rock drill rig. Wells PCY-300-MW01 PCY-300-MW02, PCY-300-MW03, and PCY-300-MW04 were advanced using 4 1/4-inch ID hollow-stem augers. Each well was constructed of 2-inch ID, threaded, schedule 40 PVC solid riser and 0.010-inch slot well screen with silt trap and well bottom cap. Each well was installed to approximately 15 feet bls and was completed with a 10 foot screen section. Each annulus was filled to approximately 2 feet above the well screen with US Standard Sieve size 20/30 silica sand. A 6-inch layer of bentonite pellets was placed above the sand pack and hydrated. The remainder of the annulus was grouted to the surface. Each well is secured with a locking, water-tight cap

within a steel, 8-inch diameter steel manhole. The manhole was set within a 24-inch square concrete apron finished slightly above grade. Well completion logs are provided in Appendix H.

Each well was developed using a centrifugal pump. During well development, field measurements of pH, temperature, and specific conductance were monitored from the purge water generated. The wells were developed up to a maximum of one hour or until the field measurements became stable and the purge water clear. Water quality stabilization was determined using the following criteria: temperature +/-05°C, pH +/-0.1 unit, and specific conductance +/-10 umhos/cm. The wells were developed under the supervision of a geologist. All development water was containerized for disposal.

2.4 LITHOLOGIC SAMPLING

Representative soil samples were collected during the soil vapor assessment to assess the shallow subsurface geologic conditions at the site. Samples used for lithologic description were collected from a stainless steel split spoon sampler lined with plastic sleeves. Grab samples from soil cuttings generated during monitoring well installations were also used for lithologic description. Soil boring logs are included as Appendix E.

2.5 SOIL VAPOR ANALYSIS

Headspace analysis was conducted on soil samples collected during the soil vapor assessment (direct push borings and monitor well installation borings) using an OVA-FID. The soil vapor analysis was performed according to the headspace method prescribed in Rule 62-770.200 (2) FAC Screened soil samples with corrected headspace levels in excess of 50 ppm are defined as "excessively contaminated soil" at diesel contaminated sites. The Headspace Methodology for Determining Soil Organic Vapor Concentrations is described in detail in Appendix F.

2.6 SOIL SAMPLING

Upon completion of each soil boring during the direct-push sampling investigation, a soil sample was retained from the sample interval which exhibited the highest OVA reading. The sample was placed in a 4-ounce glass jar and immediately provided to TEG for screening of TPH-DRO, by USEPA Modified Method SW-846 3550/8015. TEG provided an on-site mobile laboratory for screening purposes. Data reports for the field screening of TPH-DRO are included in Appendix I.

4.00

Soil samples for laboratory analysis were collected at SB01, SB04, and SB05 and analyzed by USEPA Methods 8010 (volatile organic halocarbons), 8020 (volatile organic aromatics), and 8100 (polynuclear aromatic hydrocarbons). Samples were also analyzed for total recoverable petroleum hydrocarbon (TRPH) by the FLPRO analytical method, and for lead by SW-846 7421. These samples were collected to confirm the presence of petroleum-related compounds. The laboratory data reports are included in Appendix J.

2.7 HYDROLOGIC INVESTIGATION

2.7.1 Water Level Measurements

The depths to groundwater in monitoring wells PCY-300-MW01, PCY-300-MW02, PCY-300-MW03, PCY-300-MW04, and piezometer wells PZ-1, PZ-2 and PZ-3 were collected on April 23, 1997. Measurements were collected from the north rim of the top of well casings using an electronic water level indicator. The water level measurements were collected to determine the depth to water in the surficial aquifer. The water level measurement field forms are provided in Appendix K.

The elevation of the north rim for each top of well casing was surveyed by B&R Environmental to the nearest 0.01 foot relative to an on-site datum. An arbitrary benchmark was established using the top of well casing for PZ-2. A relative elevation of 10.00 feet was assigned to the bench mark. An auto-level transit and surveying rod were used to survey the casing elevations. The relative elevation was calculated by subtracting the depth to water from the top of casing elevation.

2.7.2 Aquifer Characteristics

On April 2, 1997, B&R Environmental performed aquifer slug tests on monitoring wells PCY-300-MW02, PCY-300-MW03, and PCY-300-MW04. Each test was performed by displacing a volume of water with a "slug" and recording the recharge rate of the displaced water in the well. The recharge rate was recorded using an electronic data logger and pressure transducer. The Bouwer and Rice methodology for partially penetrating wells in unconfined aquifers was utilized to calculate hydraulic conductivity values for the three monitoring wells as described in Bouwer, 1989 and Bouwer and Rice, 1976. Calculations were performed using the Aqtesolv™ aquifer characterization program as described in Duffield and Rumbaugh, 1991. Slug test data and calculations used to determine hydraulic conductivity are included in Appendix L.

2.7.3 Groundwater Flow Velocity and Transmissivity

The horizontal groundwater gradient across the site was evaluated from water level measurements collected on April 23, 1997. The groundwater gradient was calculated by determining the perpendicular distance between groundwater contours developed from groundwater elevation data. Groundwater gradient calculations are included in Appendix M.

The groundwater flow gradient was determined using the following equation:

$$i = \frac{h_1 - h_2}{d}$$

where:

i = the hydraulic gradient

 h_1 = the water elevation at point 1

 h_2 = the water elevation at point 2

d = the distance between point 1 and point 2

Potential movement of groundwater at the site may be described in terms of transportation by natural flow in the saturated zone while assuming groundwater flow follows Darcy's Law. Darcy's Law may be expressed as:

$$V = \left(\frac{K}{n}\right) x i$$

where:

V = average seepage velocity

K = hydraulic conductivity

n = effective porosity (assumed)

i = average hydraulic gradient

Site specific transmissivity is calculated using the following equation:

-<u>,</u> 74 - ξ

where:

T = transmissivity

K = hydraulic conductivity

b_e = affected aquifer thickness

The groundwater seepage velocity and aquifer transmissivity calculations are included in Appendix M.

2.7.4 <u>Tidal Influence Survey</u>

A tidal survey was conducted during the RFI to determine if the potentiometric surface at locations close to Alligator Bayou are influenced by tidal fluctuations. Continuous water level measurements were obtained from several selected monitoring wells for a period of 24 hours. Monitoring wells PCY-14-5 and PCY-1-3 were selected at SWMU 1 and Area of Concern (AOC) 2, to evaluate the effects of tidal influence near Alligator Bayou. Monitoring well PCY-14-5 is located 40 feet from the seawall at Alligator Bayou and was paired with PCY-1-3, located 200 feet from the Bayou.

2.8 WATER SAMPLING

2.8.1 Free Product Sampling

Prior to groundwater sampling on April 23, 1997, B&R Environmental personnel checked each well for free product using a clean disposable bailer. The bailer was used to extract a water sample from the top of the well's water column to visually inspect for free product. Free product was not encountered during the CA by B&R Environmental personnel.

2.8.2 Groundwater Sampling Direct-Push Investigation

During the direct-push field investigation, each soil boring was continued into the saturated zone to collect groundwater samples for mobile laboratory screening. The samples were collected using a detachable drive tip attached to a 24-inch long, retractable, stainless steel well screen encased in the lead probe tube. After the water sampler was advanced into the water bearing zone, the probe was withdrawn 24 inches to allow the retractable screen to open to the formation.

-. . (

For groundwater recovery a length of Tygon tubing was inserted into the probe and connected to a peristaltic pump. Several screen volumes were then pumped from the probe in order to reduce the turbidity level. After sufficient purging, groundwater samples were collected by pumping directly into 40 ml vials. The samples were immediately taken to the on-site mobile laboratory for screening for TPH-DRO constituents. All purge water was placed in 55-gallon drums on-site for later characterization and disposal. The results of the mobile laboratory screening are presented in Appendix I.

2.8.3 Groundwater Sampling of Monitoring Wells

Groundwater sampling of monitoring wells was performed to determine the presence or absence of dissolved petroleum hydrocarbons in groundwater in the vicinity of the diesel UST system. Groundwater samples were collected by B&R Environmental personnel from well PCY-300-MW01, PCY-300-MW02, PCY-300-MW03, and PCY-300-MW04 on April 23, 1997. Groundwater samples collected from each monitoring well were analyzed using USEPA Method 239.2 for lead (unfiltered), USEPA Method 504.1 for gas chromatograph (GC) extractable volatile organics (1,2-dibromoethane or EDB), USEPA Method 601 for GC purgeable halocarbons, and USEPA Method 602 for GC purgeable aromatics (benzene, toluene, ethylbenzene, xylenes, and methyl-tert butyl ether), USEPA Method 8100 for GC PAHs, and Florida PRO for TRPH. The groundwater samples were collected using new tygon tubing and a peristaltic pump. Approximately five well volumes of groundwater were removed from each well using the peristaltic pump and tygon tubing. Temperature, pH, specific conductance measurements, and well purge volumes were recorded at the time of sample collection and are provided in Appendix K. Groundwater samples were placed on ice and shipped to Accutest Laboratories, Inc., in Orlando, Florida.

All sampling activities were performed in accordance with the procedures prescribed in the FDEP Quality Assurance Section's Standard Operating Procedures for Laboratory Operations and Sample Collection Activities, (DER-001/92), adopted by B&R Environmental's CQAP. In accordance with DER-001/92 section 4.4.2, sample preservation was accomplished by obtaining pre-preserved containers from a laboratory with a DER approved CQAP (Accutest Laboratories, Inc.). During the sampling events, quality control samples (e.g. equipment blanks) were prepared and submitted to the laboratory as required by the approved CQAP. Sampling activities were documented in a site-specific field logbook, and samples were transmitted under chain-of-custody protocols to the laboratory. Groundwater laboratory data sheets are included in Appendix N.

3.0 RESULTS OF INVESTIGATION

3.1 SITE HYDROGEOLOGY

3.1.1 Lithology

The site is underlain by sediments composed predominately of light gray to white to yellowish orange, fine grained sand, with little to no fines. This soil type extends to at least 15 feet bls, which was the maximum depth drilled during the contamination assessment investigation. Due to the homogeneity of the subsurface, no lithologic cross-section was constructed. Soil boring logs are included as Appendix E.

3.1.2 Aquifer Characteristics and Classification

Based on water level data collected from site monitoring wells on April 23, 1997, the depth to the shallow aquifer across the study area is approximately 7 to 9 feet bls. The groundwater level measurements are presented in Table 3-1. The water level measurement field forms are provided in Appendix K. The aquifer is classified as a G-II aquifer based on dissolved solids content typically associated with the surficial aquifer in the area of CSS.

Rising-head slug tests conducted at wells PCY-300-MW02, PCY-300-MW03, and PCY-300-MW04 were used to estimate the hydraulic conductivity of the surficial aquifer at Building 300. The geometric mean hydraulic conductivity for the surficial aquifer was estimated 10.24 ft/day as shown by the hydraulic conductivity calculations provided in Appendix L.

Using the groundwater flow gradient equation presented in Section 2.8.3, a hydraulic gradient of 0.01 feet/foot to the south-southeast was calculated from the data collected on April 23, 1997. The groundwater flow direction is depicted in Figure 3-1.

Lithologic data and available literature indicate the effective porosity of the soils comprising the surficial aquifer is approximately 0.30 (Heath, 1994).

4 A 1

This page intentionally left blank.

TABLE 3-1 DEPTH TO GROUNDWATER MEASUREMENTS Site G300 Coastal Systems Station, Panama City, Florida

Coastal Systems Station, Panama City, Florida FDEP Facility No. 038518667

Monitoring Well ID	Date Collected	Top of Well Casing Elevation (feet AD)	Free Product Thickness (feet)	Depth to Water (feet below TOC)	Water Table Elevation (feet AD)	Well Screen Interval (feet bis)
PCY-300-	04/23/97	10.28	0.00	8.83	1.45	5 to 15
MW01	04/24/97		0.00	8.85	1.43	
PCY-300-	04/23/97	10.00	0.00	8.79	1.21	5 to 15
MW02	04/24/97		0.00	8.83	1.17	
PCY-300-	04/23/97	10.30	0.00	8.94	1.36	5 to 15
MVV03	04/24/97		0.00	8.94	1.36	
PCY-300-	04/23/97	8.91	0.00	7.28	1.63	5 to 15
MW04	04/24/97		0.00	7.29	1.62	
PZ-1	03/21/97	10.44	0.00	8.73	1.71	4 to 14
	4/23/97		0.00	9.13	1.31	
PZ-2	03/21/97	10.00	0.00	8.37	1.63	4 to 14
	4/23/97		0.00	8.38	1.62	
PZ-3	03/21/97	10.17	0.00	8.64	1.53	4 to 14
	4/23/97		0.00	8.75	1.42	

Note

bls = below land surface

ID = identification

AD = arbitrary datum elevation (relative to the top of well casing for piezometer well PZ-2)

TOC = top of well casing

100

Using a hydraulic conductivity of 10.24 feet/day, the hydraulic gradient of 0.01 feet/foot, an inferred effective porosity value of 0.30, and Darcy's Equation as stated in Section 2.8.3, the groundwater seepage velocity across the site was calculated at 0.34 feet/day in a south-southeast direction. The transmissivity of the surficial aquifer was calculated at 4.9 X 10⁻² ft²/day. Groundwater gradient and transmissivity calculations are included in Appendix M.

3.1.3 Tidal Influence

Results of the tidal survey conducted previously at monitoring wells PCY-14-5 and PCY-1-3 indicate that at SWMU 1 and AOC 2, the distance in which significant tidal influence was observed, was less than 40 feet from Alligator Bayou, and less then 200 feet from the shoreline at St. Andrew Bay. The presence of a sea wall at the bayou may interfere with natural groundwater flow and impede tidal influence in the area near the bayou (ABB Environmental Services Inc., 1995). Building 300 is located approximately 500 feet east of SWMU 1 and AOC 2, 350 feet north of Alligator Bayou, and 400 feet west of St. Andrew Bay. Therefore, significant tidal influence is not expected at Site G300.

3.2 SOIL QUALITY

The vertical and horizontal extent of petroleum impacted soil in the vadose zone was assessed through soil vapor analysis performed during the direct-push investigation and monitoring well installation as described in Section 2.2.1 and 2.2.2 of this report. The highest soil vapor concentrations detected in vadose zone soils were 300 parts per million (ppm), 110 ppm, and 100 ppm, at boring locations SB-4, SB-5 and SB-9 respectively. These samples were collected at depths of six to seven feet bls. These data indicate that "excessively contaminated" soil (greater than 50 ppm OVA response as defined by Chapter 62-770.200, FAC) are present in the vicinity of borings SB-4, SB-5, and SB-9. Soil vapor screening results are presented in Table 2-1. Soil boring locations and vapor readings are depicted on Figure 3-2.

Analysis of soil samples for field screening of TPH-DRO constituents using a mobile laboratory indicated that petroleum-related compounds were present in the vadose zone soil. TPH-DRO concentrations were detected in soil samples from borings SB-4, SB-5, SB-9 and SB-13. The TPH-DRO concentrations ranged from 22.1 milligrams per kilogram (mg/kg) in SB-13 to 7280 mg/kg in SB-4. TPH-DRO concentrations in soil samples from the remaining borings were below method detection limits. The mobile laboratory results indicate a similar distribution of contaminants as the OVA results. The TPH-DRO concentrations are shown on Figure 3-3.

42 M (ξ)

This page intentionally left blank.

Soil samples collected for laboratory analysis at SB01, SB04, and SB05 identified petroleum compounds characteristic of diesel fuel in vadose zone soils adjacent to the southwest corner of Building 300. The highest concentrations of petroleum constituents were detected in soil samples SB04 and SB05. The soil sample at SB04 contained naphthalene, 1-methylnaphthalene and 2-methylnaphthalene at concentrations of 19,500 micrograms per kilogram (ug/kg), 55,600 ug/kg, and 63,300 ug/kg, respectively. TRPH concentrations were detected in samples at SB04 and SB05 at 5,390 mg/kg and 2,020 mg/kg respectively. Concentrations of ethylbenzene and xylene were reported in the samples from SB04 and SB05. The highest concentrations of ethylbenzene and xylene were detected in SB04 at 1,260 ug/kg and 4,320 ug/kg, respectively. Soil quality data is summarized on Table 3-2.

3.3 WATER QUALITY

Groundwater quality results from the mobile laboratory field screening reported TPH-DRO constituents in groundwater grab samples collected from soil boring locations SB-4, SB-9, SB-12, SB-13 and SB-14. The TPH-DRO concentrations ranged from 875 μ g/l in SB-13 to 17,400 μ g/l in SB-9. TPH-DRO concentrations in groundwater samples from the remaining soil borings were below method detection limits. TPH-DRO concentrations in groundwater are presented in Figure 3-4.

Groundwater laboratory results from samples collected from monitoring wells on April 23, 1997 reported the following:

Concentrations of volatile organic aromatics (VOAs) were reported below laboratory detection limits in groundwater samples collected from PCY-300-MW03 and PCY-300-MW04. Benzene was detected at 8.2 ug/L and 1.8 ug/L in samples collected from PCY-300-MW01 and PCY-300-MW02, respectively. These concentrations are above the FDEP target level of 1 ug/L for benzene, established in Chapter 62-770, FAC. Total VOAs (the total sum of benzene, toluene, ethylbenzene, and xylenes) concentrations were detected in samples from wells PCY-300-MW01 and PCY-300-MW02, at concentrations of 26 ug/L and 1.8 ug/L, respectively. These concentrations are below the FDEP target level of 50 ug/L for total VOAs. Benzene and total VOA groundwater concentrations are provided on Figure 3-5.

4 26 E

This page intentionally left blank.

TABLE 3-2 SUMMARY OF SOIL QUALITY: SELECTED PARAMETERS FROM THE KEROSENE ANALYTICAL GROUP Site G300

Coastal Systems Station, Panama City, Florida FDEP ID No. 038518667

Sample Location	Date Sampled	Ethyl- benzene (μg/kg)	Xylenes (μg/kg)	TRPH (mg/kg)	DCE (μg/kg)	1-Methyl- naphthalene (µg/kg)	2-Methyl naphthalene (µg/kg)	Naphthalene (μg/kg)	Lead (mg/kg)
300-SB01-0607	04/23/97	<1.0	<3.0	11.0	<1.0	<340	<340	<340	26.6
300-SB04-0607	04/23/97	1260	4320	5390	<55	55600	63300	19500	2.2
300-SB05-0607	04/23/97	37.9	159	2020	<1.0	<7200	<7200	<7200	2.6
Equipment Blank	04/23/97	< 1.0^	<3.0^	< 0.50^^	2.5^	<10^	<10^	<10^	<0.0030^^
Trip Blank	04/17/97	< 1.0^	<3.0^	NA	2.2^	NA	NA	NA	NA

DCE

1,2-Dichloroethane

TRPH

total petroluem hydrocarbons

NA

۸۸

not analyzed

. .

concentrations reported in micrograms per liter concentrations reported in milligrams per liter

Elevated detection limits were used in the reporting of 1-methylnaphthalene, 2-methylnaphthalene, and naphthalene concentrations from sample 300-SB05-0607, due to matrix interference.

Low concentrations of 1,2-dichloroethane were reported in groundwater samples from PCY-300-MW01 and PCY-300-MW02, at concentrations of 2.1 ug/L and 1.7 ug/L, respectively. These concentrations are below the FDEP target level of 3.0 ug/L. Low levels of 1,2-dichloroethane were detected in the trip blank and equipment blank samples which may have attributed to the levels of 1,2-dichloroethane being detected in the groundwater samples. All other volatile organic halocarbon constituents were reported below laboratory detection limits in the remaining samples.

1,2-dibromoethane (EDB) was reported below laboratory detection limits in all samples analyzed.

Concentrations of total PAHs (excluding naphthalene and methylnaphthalenes)- were below laboratory detection limits in samples from PCY-300-MW01 and PCY-300-MW02, and PCY-300-MW04. A naphthalene concentration of 33.6 ug/L was reported in the groundwater sample collected from PCY-300-MW01. 1-Methylnaphthalene and 2-methylnaphthalene were detected in PCY-300-MW01 at concentrations of 18 ug/L and 24.1 ug/L, respectively. The total naphthalene concentration (sum of naphthalene and methylnaphthalenes) of 75.5 ug/L is below the FDEP target level of 100 ug/L for total naphthalene. Naphthalene and total naphthalene groundwater concentrations are shown on Figure 3-6.

Groundwater samples from PCY-300-MW01 and PCY-300-MW02 detected TRPH concentrations at 3.95 mg/L and 0.846 mg/L, respectively. These concentrations are at levels below the TRPH target level of 5 mg/L. Groundwater TRPH concentrations are depicted on Figure 3-7.

Total lead was detected in groundwater samples from PCY-300-MW01 and PCY-300-MW02 at concentrations of 0.005 mg/L and 0.0094 mg/L, respectively. These concentrations are below the target level for lead established at 0.05 mg/L. Total lead groundwater concentrations are provided on Figure 3-8.

A summary of groundwater analytical results from the April 23, 1997 sampling event are presented in Table 3-3. Groundwater laboratory analytical results are provided as Appendix N. Field sampling forms are included in Appendix K.

-1 74 (§ 1

This page intentionally left blank.

Brown & Root Environmental

COASTAL SYSTEMS STATION PANAMA CITY, FLORIDA

SCALE: 1" = 20"

CAD DWG. NO.: 7540CM06

PROJ. NO.: 7540

TABLE 3-3 SUMMARY OF GROUNDWATER QUALITY: SELECTED PARAMETERS FROM THE KEROSENE ANALYTICAL GROUP

Site G300

Coastal Systems Station, Panama City, Florida FDEP ID No. 038518667

Well ID	Date Sampled	Benzene (μg/L)	Total VOA (μg/L)	MTBE (μg/L)	DCE (μg/L)	EDB (μg/L)	Naphthalene (μg/L)	Total Naphthalenes (μg/L)	TRPH (mg/L)	Lead Unfiltered Samples (mg/L)
PCY-300-MW01	04/23/97	8.2	26	< 1.0	2.1	<0.02	33.6	75.7	3.95	0.0050
PCY-300-MW02	04/23/97	1.8	1.8	< 1.0	1.7	<0.02	<10	NCD	0.846	0.0094
PCY-300-MW03	04/23/97	<1.0	NCD	<1.0	<1.0	<0.02	<10	NCD	<0.50	<0.0030
PCY-300-MW04	04/23/97	<1.0	NCD	<1.0	2.2	<0.02	<10	NCD	<0.50	<0.0030
Equipment Blank	04/23/97	< 1.0	NCD	< 1.0	1.4	<0.02	<10	NCD	<0.50	<0.0030
Trip Blank	04/17/97	< 1.0	NCD	< 1.0	2.7	NA	NA	NA	NA	NA

NOTE

NA

not analyzed

Total VOA total volatile organic aromatics = sum of benzene, toluene, ethylbenzene, and xylenes

MTBE

methyl tert-butyl ether 1,2-Dichloroethane

DCE EDB

1,2-Dibromoethane = ethylene dibromide

NCD

no constituents detected

TRPH

total petroluem hydrocarbons

4.0 DISCUSSION

"Excessively contaminated" soil, as defined by Chapter 62-770.200 FAC, was detected within the vadose zone by B&R Environmental during this CA. The "excessively contaminated soil" was identified at depths of 6 to 7 feet bls in an area adjacent to the day tank vent line which extends along the southwest corner of Building 300. These soils exhibited hydrocarbon staining, emitted diesel like odors, and generated headspace readings of greater than 50 ppm. Soil vapor analysis and TPH-DRO concentrations from the soil samples indicate the areal extent of "excessively contaminated soil" is limited to a small area south and southwest of the southwest corner of Building 300. The proximity of the building and the building's footers to the soil contamination makes it impractical to assess soil conditions beneath the building and/or remove the soil without adversely impacting the structural integrity of the building. "Excessively contaminated soil" at the southwest corner of the building was excavated to approximately 5 feet bls during the Tank Closure Assessment. This has minimized the amount of hydrocarbons available to leach from the soil matrix into the groundwater. Soil contamination, if present under the building, would be capped by the building foundation, restricting precipitation from percolating through the vadose zone soils, and would retard the leaching of petroleum hydrocarbons into the groundwater beneath the building. No hydrocarbon vapors were detected in soil samples collected during the Tank Closure Assessment for the 2,500 gallon diesel UST. The 2,500 gallon UST was located approximately 40 feet south of the southwest corner of Building 300. The absence of soil contamination near the former 2,500 gallon UST supports the overspill at the day tank vent line as being the point source for the diesel release. No free product was encountered during the CA.

Laboratory analysis of groundwater samples collected during the CA indicate dissolved hydrocarbon concentrations above FDEP target levels for benzene are present in the groundwater at the site. The highest benzene concentration of 8.2 ug/L was detected in source well PCY-300-MW01. Benzene was reported at a concentration of 1.8 ug/L in downgradient delineation well PCY-300-MW02, slightly above the FDEP target level of 1 ug/L. Benzene was reported at non-detectable levels in groundwater samples analyzed from the remaining perimeter wells. Naphthalene above the method detection limit was only detected in the source well PCY-300-MW01. Naphthalene and total naphthalenes were reported at non-detectable levels in groundwater samples from the remaining perimeter wells. The dissolved hydrocarbon plume appears to be oblate in shape and approximately 50 feet long by 20 feet wide. The plume is delineated by monitoring wells PCY-300-MW02, PCY-300-MW03 and PCY-300-MW04. Based on

petroleum hydrocarbon concentrations detected in monitoring wells downgradient from the site, Alligator Bayou does not appear to be threatened by the levels of hydrocarbons detected at the site.

The predominant soil type of the surficial aquifer is sand. No vertical delineation wells were installed due to the initial response activities to remove "excessively contaminated" soil at the time the surface spill was detected and the relatively low concentrations of dissolved hydrocarbons detected in the groundwater during the CA investigation.

Depth to water in the surficial aquifer was determined to be approximately 8 feet bls. No subsurface utilities were identified within the area of the dissolved hydrocarbon plume which could potentially intersect the water table and provide a preferential pathway for the migration of dissolved hydrocarbons. Subsurface gas, telephone, electric, and sewer lines were identified in the area however these utilities are typically completed at depths of 4 feet bls. The direction of groundwater flow for the surficial aquifer is toward the south-southeast toward Alligator Bayou. The groundwater flow velocity was calculated at 0.34 feet/day. The total dissolved solids content in the surficial aquifer in the area of CSS qualifies the aquifer as a G-II aquifer (Chapter 62-3.403 FAC).

The effects of tidal influence on the groundwater flow direction at the site is negligible. A sea wall constructed at Alligator Bayou restricts the natural flow of groundwater in the area and limits the effects of tidal influence. Alligator Bayou acts as the natural discharge point for the surficial aquifer downgradient of the site. However, the seawall does create a vertical component of groundwater flow as groundwater which normally discharges to the bayou tries to flow under and/or along the seawall.

No well fields and surface water intakes which supply drinking water to the local area are located within a 0.50-mile radius of the site. No domestic water wells were identified within 0.25-mile of the site. Surface water bodies and freshwater aquifers utilized in the study area are not likely to be threatened by the levels of hydrocarbons detected at the site.

5.0 CONCLUSIONS AND RECOMMENDATION

The results of the CA at CSS Building 300 suggest the following:

- Groundwater in the surficial aquifer at the site has a G-II classification;
- Private potable water wells were not identified within 0.25-mile radius of the site.
 Municipal well fields were not identified within a 0.50-mile radius of the site;
- During the CA "excessively contaminated" soil was encountered at 6 to 7 feet bls adjacent to the northwest corner of Building 300 near the day tank vent line.
- Given the close proximity of the excessively contaminated soil to Building 300, removal of the soil is impractical due to the potential impact on the structural integrity of the building; and
- Free product was not encountered at the site.

Analysis of groundwater samples from site monitoring wells show naphthalene being detected in groundwater above the State Target Level of 10 ug/L in monitor well PCY-300-MW01 and total naphthalene in the well at a concentration below the State Target Level of 100 ug/L. Naphthalene and total naphthalene were detected in PCY-300-MW01 at concentrations of 22.6 ug/L and 75.7 ug/L respectively. Well PCY-300-MW01 was the only well where concentrations of naphthalenes were detected in groundwater samples.

The remaining Kerosene Analytical Group parameters analyzed from groundwater samples were at non-detectable concentrations and/or at concentrations below FDEP target levels. Kerosene and Gasoline Analytical Group groundwater concentration criteria for No Further Action (NFA) criteria for G-II aquifer without wells is presented in Table 5-1 (FDEP, 1990).

Laboratory analytical results for groundwater samples indicate that the dissolved hydrocarbon concentrations meet the criteria established for No Further Action (NFA), as established in the FDEP's, October 1990, "No Further Action and Monitoring Only Guidelines for Petroleum Contaminated Sites", for all constituents of the Kerosene Analytical Group.

Evaluation of soil assessment data indicates that "excessively contaminated" soil, as defined by Chapter 62-770.200, FAC, is present at the site. The areal extent of the excessively contaminated soil is limited to a small area adjacent to the southwest corner of building 300, and

extends approximately 3 to 4 feet below the building footer. The proximity to the building footer makes it impracticable to remove the soil without adversely impacting the structural integrity of the building.

Although the dissolved hydrocarbon concentrations meet the criteria established for NFA, the site does not qualify for NFA due to the presence of excessively contaminated soil. Since it is impracticable to remove the excessively contaminated soil, it is recommended that a Monitoring Only Program (MOP) be implemented at the site. The MOP should include 6 months of monitoring for Total Volatile Organics and Polynuclear Aromatic Hydrocarbons using the following wells.

Monitoring Well	Rationale
PCY-300-MW01	Source well in area of highest dissolved hydrocarbons
PCY-300-MW02	Downgradient area of dissolved hydrocarbons
PCY-300-MW04	Upgradient of the area of dissolved hydrocarbons

If the dissolved hydrocarbon concentrations remain at or below NFA levels for two consecutive quarterly sampling events the site should be considered for NFA status.

TABLE 5-1 MAXIMUM ACCEPTABLE GROUNDWATER CONSTITUENT LEVELS Site G300

Coastal Systems Station, Panama City, Florida FDEP Facility No. 038518667

Analyte or Analytical Method	Highest Ground - Water Constituent Level in Site Monitoring Wells	No Further Action		Monitoring Only				
		G-II Aquifer	G-II Aquifer	G-II Aquifer with	ı wells	G-II Aquifer without wells		
		(with wells)	(without wells)	source	perimeter	source	perimeter	
Total BTEX	26	50	50	500	50	1000	50	
Benzene	8.2	1	50	250	1	500	50	
TRPH	3.95^	5^	5^	50^	5^	100^	5^	
Lead	9.4	50	50	500	50	1^	50	
EDB	<0.02	0.02	0.02	0.02	0.02	0.4	0.02	
Total Naphs	75.7	100	100	1000	100	2000	100	
EPA 610	<10	DL	DL	10xDL	DL	20xDL	DL	
EPA 601	2.1	3.0	3.0	10xDW-SRLs	DW-SRLs	20xDW-SRLs	DW-SRLs	
Arsenic	NA	50	50	500	50	1^	50	
Cadmium	NA	10	10	100	10	200	10	
Chromium	NA	50	50	500	50	1^	50	
EPA 624	NA	DW-SRLs	DW-SRLs	10xDL-SRLs	DW-SRLs	20xDW-SRLs	DW-SRLs	
EPA 625	NA	DW-SRLs	DW-SRLs	10xDL-SRLs	DW-SRLs	20xDW-SRLs	DW-SRLs	

Note

All data in µg/L unless otherwise noted

^ data in mg/L

Source: monitoring wells near suspected hydrocarbon source Perimeter: Monitoring wells located at perimeter of plume TRPH: Total Recoverable Petroleum Hydrocarbons

Total Naphs: sum of naphthalenes and methylnaphthalenes

DW-SRLs: Drinking Water Standards or Applicable Site Rehabilitation Levels

DL: Detection Limit

NCD No Constituents Detected

NA Not Analyzed

6.0 REFERENCES

- ABB Environmental Services, Inc., 1995, RCRA Facility Investigation, Coastal Systems Station Panama City, Florida.
- Bouwer, H 1989. The Bouwer and Rice Slug Test an Update. Groundwater, v. 27,pp. 304-309.
- Bouwer, H. and R.C. Rice. 1976, A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers with Complete or Partially Penetrating Wells. Water Resources, V. 12, pp. 423-428.
- Commanding Officer, Navy Experimental Diving Unit, Summary of the Command Investigation of the Building 300 Fuel Spill of 7 Sep 96, October 31, 1996.
- Duffield, G.M., and Rumbaugh, J.O. 1991. AQTESOLV, Aquifer Test Solver, Ver. 1.
- E.C. Jordan Company, 1990, Release Detection Program For Underground Storage Tanks, Naval Coastal Systems Center, Panama City, Florida.
- Florida Department of Environmental Protection, October 1990. No Further Action and

 Monitoring Only Guidelines for Petroleum Contaminated Sites. Guidance document issued by Bureau of Waste Cleanup, Technical Review Section.
- U.S. Geological Survey. Panama City, FLA., Quadrangle 1982. 7.5 minute series, Topographic Quadrangle Maps of Florida: scale 1:24,000.
- U.S. Geological Survey. Panama City Beach, FLA., Quadrangle 1982. 7.5 minute series, Topographic Quadrangle Maps of Florida: scale 1:24,000.

APPENDIX A

DISCHARGE NOTIFICATION FORM AND FDEP CORRESPONDENCE

<u>.</u>:

Florida Department of Environmental Regulation..

Twin Towers Office Bidg. • 2600 Blur Stone Road • Tallanassee Florica 323,99-2400

· Aum Face Decreepe	Harding tom
Sea on Dem	990
1064 Approximate No.	12 (2)
i_	: Jen.

Discharge Reporting Form

Use this form to notify the Department of Environmental Regulation of:

- 1. Results of tank tightness testing that exceed allowable tolerances within ten days of receipt of test result.
- 2. Petroleum discharges exceeding 25 gallons on pervious surfaces as described in Section 17-761,460 F.A.C. within one working pay of disco
- 3. Hazzroous substance (CERCLA regulated), discharges exceeding applicable reportable quantities established in 17-751.480(2) F.A.C., whose working day of the discovery.
- 4. Within one working day of discovery of suspected releases confirmed by: (a) released regulated substances or pollutarity discovery the surrounding area. (b) unusual and unexplained storage system operating conditions. (c) monitoring results from a leak detection me or from a tank closure assessment that indicate a release may have occurred, or (d) manual tank gauging results for tasks of 550 ga or less, exceeding ten gallons per weekly test or five gallons averaged over four consecutive weekly tests.

	Mail to the DER District Office in your area listed on the reverse side of this form
	PLEASE PRINT OR TYPE
	Complete all applicable branks
1.	DER Facility ID Number: 038518667 2. Tank Number: G300R1 3. Date: 917/96
4	Facility Name: COASTAL SYSTEMS STATION
	Facility Owner or Operator: U.S. NAVY
	Facility Address: 6703 W. Huy 98 PANAMA CITY FL 32407-700
	Facility Address: 6703 W. Huy 98 PANAMA C.TY FL 32407-700 Telephone Number: (904) 235-5859 County: BAY
	Mailing Address: NAVAL SURFACE WARFARE CENTER COASTAL SYSTEMS STATION. CODE 051E
5.	Date of receipt of test results or discovery: 9/17/96 month/day
	Method of initial discovery. (circle one only) A. Liquid detector (automatic or manual) B. Vapor detector (automatic or manual) C. Tightness test (underground tanks only). D. Emptying and Inspection. E. Inventory control. G. Closure: H. Other:
7.	Estimated number of gallons discharged: 100 - 150 GALLONS
8.	What part of storage system has leaked? (circle all that apply) A. Dispenser B. Pipe C. Fitting D. Tank: E. Uni
9.	Type of regulated substance discharged. (circle one)
	A. lezded gasoline D. vehicular diesel L. used/waste oil V. hazardous substance includes passades, amounted passades, amount
10:	Cause of leak. (circle all that 20pty)
	A. Unknown C. Loose connection E. Puncture G. Spill 1. Other (specify)
	B. Split D. Corrosion F. Installation failure H Overfill 1884
11.	Type of financial responsibility. (circle one) A. Third party insurance provided by the state insurance contractor B. Self-insurance pursuant to Chapter 17-769-500 F.A.C. D. None
12.	To the best of my knowledge and belief all information submitted on this form is true, accurate, and complete.
	Michael D. Clayton ENVIR. ENGINEER Michael D. Clayton
	Printed Name of Owner, Operator or Authorized Representative Signature of Owner, Operator or Authorized Represent

r. 4

,也是一种,我们就是一种,我们就是一种,我们就是一种,我们就是一种,我们就是一种,我们就是一种,我们就是一种,我们就是一种,我们就是一种,我们就是一种,我们就是 我们是我们就是一种,我们就是一种,我们就是一种,我们就是我们就是我们就是我们就是我们就是我们就是一种,我们就是我们就是我们就是一种,我们就是我们的我们就是我们的

Author: McDonald_Arturo at PC-IRM1

Date: 9/26/96 5:29 PM

priority: Normal Receipt Requested

TO: Ericson_E3pnsl.dcp.state.fl.us at -INTERNET

CC: Cross Mike at PC-IRMS, Oster Bill at PC-IRMS, Clayton Mike at PC-IRM4, NJUgolini@efdsouth.navfac.navy.mil at -INTERNET, Snow Rick_CDR at PC-IRM2, Moody_T@pnsl.dep.state.fl.us at -INTERNET

Subject: Initial Remedial Action follow-up report

Dear Mr. Ericson:

This is a follow-up to our letter of September 23, 1996 (faxed on 9/20/96) regarding the initial remedial action in the vicinity of our AST #G300R1.

This initial remedial action was abandoned on 9/23/96 after it became apparent that the amount of excessively contaminated soil was not the result of just the discharge discovered and reported on 9/17/96. We believe that this contamination resulted from various generator day-tank overfills since 1972.

It is our intent at this time to fill the hole with clean backfill and to initiate a Contamination Assessment Report in accordance with F.A.C. Rule 62-770.

If you require additional information at this time, please call me at (904) 234-4743 or Mike Cross at (904) 234-4744. I will be out of the office until Monday, 10/7/96.

ŕ. 5

AND THE PROPERTY OF THE PROPER

Author: Eric Ericson PEN 904/444-8360 <ERICSON_E@pnsl.dep.state.fl.us> at -IMTERNET

Date: 9/27/96 9:03 AM

Priority: Normal

TO: McDonald Arturo at PC-IRM1

C: NUZIE_E@dep.state.fl.us at -INTERNET, PINKOVSKY_D@epic.dep.state.fl.us at.-INTERNET, MOODY_Topnsl.dep.state.fl.us at -INTERNET

Subject: Re: Initial Remedial Action - Coastal Systems Station Regarding the Discharge Reporting Form which reported a 9/17/96 discovery of contamination at Coastal Systems Station (DEP #03/8518667 and Navy Tank #G300R1), this office referred the initial investigation of the discovery to the Bay County Public Health Unit (BCPHU). The BCPHU is under contract with the DEP to investigate initial discoveries of contamination as well as perform annual inspections of all regulated pollutant storage tanks in Bay County, Florida.

Mr. Drew Pinkovsky or his associate from the BCPHU will perform an inspection of this discovery and a letter to perform a Florida Chapter 62-770 Remedial Action should be sent by his office. From that point on, our Federal Facilities Coordinator, Mr. Eric Nuzie will become your point of contact related to submittals and reviews of Chapter 62-770 technical documents. In the Pensacola DEP District Office, we are concerned about what happens in our District, but we feel that it would be most appropriate if you eliminated us, the "middleman" from your technical document submittals.

Although you will be submitting the Chapter 770 cleanup documents to Mr. Nuzie, if it is possible, will you please send copies of your letters of transmittals to Mr. Nuzie to us at our District Office? Sending the District Office copies of the letters of transmittals is not required, but it will help us monitor your progress.

If we can help, please feel free to call.

Drew Pinkovsky - Bay County Public Health Unit - (904) 872-4815 Eric Nuzie - FDEP Federal Facilities Coordinator - (904) 488-3935 Tric Ericson - FDEP Northwest District - (904) 444-8360

Thanks.

Eric Ericson, Supervisor Storage Tank Section

APPENDIX B

CAR SUMMARY SHEET

CONTAMINATION ASSESSMENT REPORT SUMMARY SHEET

	Coastal Systems Statio	n, Site G300	Reimbursement Site:		
Location:	Panama City, Florida		State Contract Site:		
EDI#:		FAC I.D.#	038518667	Other: Non-Prog.	_
Date Reviewed:		Local C	Sovernment:		
(1) Source of Spill:	Day tank vent line	 		Date of Spill: 07.5	Sep 96
(2) Type of Product:	Gasoline Group	Gallons L	ost	Kerosene Group	Gallons Lost
	☐ Leaded			☐ Kerosene	
	☐ Unleaded Regular			☑ Diesel	≈ 132 gal
	☐ Unleaded Premium	·		☐ JP-4 Jet Fuel	
	☐ Gasohol			☐ Jet A Fuel	
	☐ Undetermined			☐ Unknown	
(3) Description of IR.	A: IRA soil excavati	on started	☐ Free produc	ct Removal:	_ (gais)
	but discontinued due to p	otential	_	il Removal: unknown	(cubic yds)
impact to structural i	ntegrity of building.		☐ Soil I	ncineration:	_ (cubic yds)
(4) Free Product still	present (yes/no)	lo Maximum	apparent product		(feet)
(5) Maximum Ground contamination lev		tal VOA: 26 lead: 9.4		enzene: 8.2 EDE MTBE: <1.0 othe	*****
	· · · · · · · · · · · · · · · · · · ·				
(6) Brief lithologic de	escription: Light gray terminate		owish orange, fine	grained sand to 15 bls at w	hich point borings
clayey sand and san	dy clay w/ abundant shell		significant lithologi	c variations across site.	
(7) Areal and vertica	l extent of soils contamina	ation defined (ye	es/no)	yes	
Highest current	soil concentration (OVA:	300	ppm) or (EPA	method 5030/8020:	4320 ppb)
(8) Lower aquifer co					
	ntaminated? (yes/no)	•	Depth of vertica	al contamination: No verti	ical extent well
(9) Date of last comp	ntaminated? (yes/no) plete round of groundwate	er sampling:	Depth of vertica 4/23/97		ical extent well
(9) Date of last comp	plete round of groundwate	er sampling: 6/16/96	·	installed	ical extent well
(10) QAPP approved	plete round of groundwate	6/16/96	·	installed	ical extent well
(10) QAPP approved	plete round of groundwated? (yes/no) Date:	6/16/96	4/23/97	installed Date of last soil sampling	ical extent well
(10) QAPP approved (11) Direction (e.g. N	plete round of groundwated? (yes/no) Date:	6/16/96 water flow:	4/23/97 SSE	installed Date of last soil sampling	ical extent well id: 4/23/97 ige 3-3)
(10) QAPP approved (11) Direction (e.g. 1 (12) Average depth (13) Observed range	plete round of groundwated? (yes/no) Date: NNW) of surficial grounds to groundwater:	6/16/96 water flow:		installedDate of last soil sampling(Figure3-1 on pa(fit) (Based on water level of collected during the CAR	ical extent well id: 4/23/97 ige 3-3)
(10) QAPP approved (11) Direction (e.g. N (12) Average depth (13) Observed range	plete round of groundwated? (yes/no) Date: NNW) of surficial groundwate groundwater: e of seasonal groundwate of groundwater flow:	6/16/96 water flow: 8 er fluctuations:	4/23/97 SSE (ft) ② 1	installedDate of last soil sampling(Figure3-1 on pa(fit) (Based on water level of collected during the CAR	ical extent well id: 4/23/97 ige 3-3)
(10) QAPP approved (11) Direction (e.g. 1) (12) Average depth (13) Observed range (14) Estimated rate (15) Hydraulic gradio (16) Aquifer charact	plete round of groundwated? (yes/no) Date: NNW) of surficial groundwater: e of seasonal groundwater of groundwater flow: ent across site:	6/16/96 water flow: 8 er fluctuations: 0.34	4/23/97 SSE (ft) @ 1 (ft/day)	installed Date of last soil sampling (Figure 3-1 on pa (ft) (Based on water level of collected during the CAR investigation)	ical extent well id: 4/23/97 ige 3-3)
(10) QAPP approved (11) Direction (e.g. 1) (12) Average depth (13) Observed range (14) Estimated rate (15) Hydraulic gradid (16) Aquifer charact Hydraulic cond	plete round of groundwated? (yes/no) Date: NNW) of surficial groundwater: e of seasonal groundwater of groundwater flow: ent across site: 0.0° ceristics: Values luctivity 10.24	6/16/96 water flow: 8 er fluctuations: 0.34 1 (ft/ft)	4/23/97 SSE (ft) @ 1 (ft/day)	installed Date of last soil sampling (Figure 3-1 on pa (ft) (Based on water level of collected during the CAR investigation)	ical extent well id: 4/23/97 ige 3-3)
(10) QAPP approved (11) Direction (e.g. f) (12) Average depth ((13) Observed range (14) Estimated rate ((15) Hydraulic gradid (16) Aquifer charact	plete round of groundwated? (yes/no) Date: NNW) of surficial groundwater: e of seasonal groundwater of groundwater flow: ent across site:	6/16/96 water flow: 8 er fluctuations: 0.34 1 (ft/ft)	4/23/97 SSE (ft) (ft/day) Units (day	installed Date of last soil sampling (Figure 3-1 on pa (ft) (Based on water level of collected during the CAR investigation) Method Bouwer & Rice, 1976	ical extent well d 2: 4/23/97 age 3-3) data
(10) QAPP approved (11) Direction (e.g. 1) (12) Average depth (13) Observed range (14) Estimated rate (15) Hydraulic gradid (16) Aquifer charact Hydraulic cond Storage coefficients	plete round of groundwated? (yes/no) Date: NNW) of surficial groundwater: e of seasonal groundwater of groundwater flow: ent across site:	6/16/96 water flow: 8 or fluctuations: 0.34 (ft/ft) ft. ft.	4/23/97 SSE (ft) (ft/day) Units (day	installed Date of last soil sampling (Figure 3-1 on pa (ft) (Based on water level of collected during the CAR investigation) Method Bouwer & Rice, 1976	ical extent well id id: 4/23/97 ige 3-3) idata ess taken aquifer to
(10) QAPP approved (11) Direction (e.g. No. 1) (12) Average depth (13) Observed range (14) Estimated rate (15) Hydraulic gradic (16) Aquifer charact Hydraulic cond Storage coeffic Aquifer thickne	plete round of groundwater d? (yes/no) Date: NNW) of surficial groundwater: e of seasonal groundwater of groundwater flow: ent across site: 0.0° teristics: Values ductivity 10.24 cient - ess 48	6/16/96 water flow: 8 or fluctuations: 0.34 (ft/ft) ft ft		installed Date of last soil sampling (Figure 3-1 on pa (ft) (Based on water level of collected during the CAR investigation) Method Bouwer & Rice, 1976	ical extent well d: 4/23/97 age 3-3) data ess taken aquifer to
(10) QAPP approved (11) Direction (e.g. No. 1) (12) Average depth (13) Observed range (14) Estimated rate (15) Hydraulic gradic (16) Aquifer charact Hydraulic cond Storage coeffic Aquifer thickne	plete round of groundwater d? (yes/no) Date: NNW) of surficial groundwater to groundwater: e of seasonal groundwater of groundwater flow: ent across site: 0.0° teristics: Values luctivity 10.24 cient - ess 48 orosity 30	6/16/96 water flow: 8 or fluctuations: 0.34 1 (ft/ft) ft ft		installed Date of last soil sampling (Figure 3-1 on pa (ft) (Based on water level of collected during the CAR investigation) Method Bouwer & Rice, 1976	ical extent well d: 4/23/97 age 3-3) data ess taken aquifer to
(10) QAPP approved (11) Direction (e.g. No. 1) (12) Average depth (13) Observed range (14) Estimated rate (15) Hydraulic gradic (16) Aquifer charact Hydraulic cond Storage coeffic Aquifer thickne	plete round of groundwated d? (yes/no) Date: NNW) of surficial groundwater: to groundwater: e of seasonal groundwater of groundwater flow: ent across site: values ductivity 10.24 cient - 48 orosity 30 368	6/16/96 water flow: 8 or fluctuations: 0.34 1 (ft/ft) ft ft		installed Date of last soil sampling (Figure 3-1 on pa (ft) (Based on water level of collected during the CAR investigation) Method Bouwer & Rice, 1976	ical extent well d: 4/23/97 age 3-3) data ess taken aquifer to

APPENDIX C

TANK CLOSURE ASSESSMENT REPORT

CLOSURE ASSESSMENT UNDERGROUND STORAGE TANK BUILDING 300

NAVAL SURFACE WARFARE CENTER COASTAL SYSTEMS STATION PANAMA CITY, FLORIDA

Unit Identification Code: N61331

Prepared by:

Navy Public Works Center Environmental Department 310 John Tower Road Pensacola, Florida, 32508

Prepared for:

Commanding Officer, Coastal Systems Station Dahlgren Division, Naval Surface Warfare Center 6703 West Highway 98 Panama City, Florida 32407-7001

Mr Mike Clayton, Code 051EMC, Environmental Engineer

April 1997

TABLE OF CONTENTS

Closure Assessment Report Underground Storage Tank Building 300 Coastal Systems Station Panama City, Florida

Chapte	er Title I	Page No.
1.0	The allies	1
1.0	Facility	1
2.0	Operator	1
3.0	Site Location.	1
4.0	Date of Closure	1
5.0	Tank Status.	1
6.0	Tank Contents	l 1
7.0	Tank Condition	1
8.0	Tank Area	1
9.0	Soil Screening	
10.0	Groundwater Analysis	
11.0	Conclusions	_
12.0	Recommendations	
13.0	Closure Assessment	2
14.0	Project Manager	
15.0	Project Number	2
16.0	Report Date	2
FIGUI	RES	
	Figure 1: Vicinity Map	
	Figure 2: Site Map	
ATTA	ACHMENTS	
	Attachment A: Application for Closure of Pollutant Storage Tank System Attachment B: Underground Storage Tank Installation and Removal Form Attachment C: Closure Assessment Form, Groundwater Analysis, & OVA Readings Attachment D: Decontamination Certification	

GLOSSARY

FAC Florida Administrative Code

OVA Organic Vapor Analyzer

AST Aboveground Storage Tank

UST Underground Storage Tank

USEPA U.S. Environmental Protection Agency

CLOSURE ASSESSMENT REPORT UNDERGROUND STORAGE TANK BUILDING 300

1.0 Facility

Building 300 Naval Surface Warfare Center Coastal Systems Station Panama City, Bay County, Florida

2.0 Operator

Commanding Officer, Coastal Systems Station Dahlgren Division, Naval Surface Warfare Center 6703 West Highway 98, Code 051 EMC Panama City, Florida 32407-7001

3.0 Site Location

See Figure 1.

4.0 Date of Closure

17 September 1996

5.0 Tank Status

There was one 2500 gallon underground storage tank (UST) removed from the southwest corner of Building 300 by the Public Works Center (PWC) as depicted by Figure 2. The UST was emptied prior to commencement of work by the Coastal Systems Station (CSS). The UST was completely decontaminated and rendered unuseable by PWC. The UST was properly disposed as scrap metal.

6.0 Tank Contents

Diesel

7.0 Tank Condition

The UST was in good condition at the time of removal.

8.0 Tank Area

The size of the excavation, was approximately twelve (12) feet wide by twenty (20) feet long and eight (8) feet deep. The excavation was filled with clean fill and compacted to grade.

9.0 Soil Screening

- Seven (7) soil samples were collected for headspace screening with an organic vapor analyzer (OVA). The samples were extracted at each side and underneath the UST is depicted by Figure 2.
- The soil screening was conducted in accordance with the headspace screening criteria in Chapter 62-770 FAC and PWC's Comprehensive Quality Assurance Plan.

10.0 Groundwater Analysis

A temporary groundwater monitoring well was placed at the center of the UST excavation, the well was developed and groundwater samples were collected on 25 March 1997. The samples were transported to the PWC Laboratory in Pensacola, Florida. The samples were analyzed using U.S. Environmental Protection Agency (EPA) Methods 8260 and 8270.

11.0 Conclusions

There were no indications of petroleum contamination noted above the state target levels for storage tank closures.

There were low levels of Chloroform, Bromodichloromethane, and Dibromochloromethane. The levels were below the State of Florida Drinking Water Standards (62-550.310 (2)(a)). There may be a leak in the local water supply or water treatment systems.

12.0 Recommendations

No further action.

13.0 Closure Assessment

Performed by the Public Works Center (PWC) Pensacola, Florida.

14.0 Project Manager

Mr. Paul R. Semmes, P.E.

15.0 Project Number

1395003

16.0 Report Date

21 April 1997

Figures

.

٤.

Attachments

APPLICATION FOR CLOSURE OF POLLUTANT STORAGE TANK SYSTEM

Provide the facility information requested below.
FDEP Facility # 03/8518667 Facility Name U. S. Navy
Facility Location Naval Surface Warfare Center, Coastal Systems Station
Property Owner Commanding Officer, NSWCCSS (Code CP2F)
Property Owner Address 6703 West Highway 98, Panama City, FL 32407-7001
Phone (904) 235-5859
Method of Tank Closure Removal
Pollutant Storage Systems Specialty Contractor (PSSSC) who will be on site supervising closure activities. Attach copy of PSSSC license.
Individual Licensed as PSSSC N/A PSSSC # N/A
Firm U.S. Navy - Public Works Center (PWC)
Address 310 John Tower Road, Pensacola, FL 32508
Indicate the firm (s) that will degas, remove, and transport the tank(s), and the method of degassification.
Degassification Method Air Eduction (API 1604-4.2.5)
Firm Removing Tanks <u>U.S. Navy - Public Works Center (PWC)</u>
Contact Mr. Paul Semmes, P.E. Phone (904) 293-0635
Firm Transporting Tanks <u>U. S. Navy - Public Works Center (PWC)</u>
Contact Mr. Paul Semmes, P.E. Phone (904) 293-0635
Firm Receiving Tanks for Ultimate Disposal <u>U.S. Navy - DRMO</u>
Contact Ms. Gayle Brown Phone (904) 452-3459

Indicate the laboratory that will conduct groundwater analysis. Contracted Laboratory U.S. Navy - PWC Phone (904) 452-4728 Contact Mr. Joe Moore FDEP QA/QC 920121G Indicate firm(s) transporting and disposing of contaminated soils. Firm Transporting Soils N/A Contact _____ Phone ____ Firm Remediating/Disposing Soils Contact _____ Phone ____ Disposal/Remediation Method Indicate the firm(s) that will transport and ultimately dispose of residual product and sludge from the tanks. Firm Transporting Residual Product and Sludge U.S. Navy - PWC Contact Mr. Jerry Levins Phone (904) 452-8237 Firm Receiving/Disposal Residual Product and Sludge DRMO Contact Ms. Gayle Brown Phone (904) 452-3459 Indicate the firm and names of personnel that will conduct field sampling. Contracted Firm U.S. Navy - Public Works Center (PWC) Contact Mr. Paul Semmes, P.E. Phone (904) 293-0635 Person (s) Sampling Mr. Paul Semmes, P.E. Equipment used for soil screening (Specific Make and Model) Organic Vapor Analyzer (OVA) Thermo Environmental (680 HVM) equipped w/Flame Ionization Detector (FID).

)

Florida Department of Environmental Protection

Twin Towers Office Bldg. ● 2600 Blair Stone Road ● Tallahassee, Florida 32399-2400

DEP Form # 62-761 9 Undergrou Form Title Removal Fo	00(5) and Storage Think Immediation can for Certified Contractors
Effective Date Decemb	er 10, 1990
DEP Application No.	
<u></u>	(Filled in by DEP)

Underground Storage Tank Installation and Removal Form For Certified Contractors

'ollutant Storage Systems Contractor as defined in Section 489.105, Florida Statutes (certified contractors as defined in Section 2-761.200, Florida Administrative Code) shall use this form to certify that the installation, replacement or removal of the storage tank system(s) ocated at the address listed below was performed in accordance with Department Reference Standards.

General Facility Information	
1. DEP Facility Identification No.: 03/8518667	
2. Facility Name: US MANY - NSWC, CSS Telephone: (904) 235-5859	
3. Street Address (physical location): 6703 WEST HIGHWAY 98, PANAMA CITY, FLORIDA 3240	7 - 7001
4. Owner Name: COMMANDING-OFFICER, NSWC, CSSTelephone: (904) 235-5859	· · · · · · · · · · · · · · · · · · ·
5. Owner Address: CO, NSWC, SS (CODE CP25) 6703 WEST HIGHWAY 98, PANAMA CITY, FL	32407
6. Number of Tanks: a. Installed at this time0 b. Removed at this time1	
. Tank(s) Manufactured by: UNKNOWN	
8. Date Work Initiated: 17 SEPTEMBER 1996 9. Date Work Completed: 17 SEPTEMBER 199	6
Underground Pollutant Tank Installation Checklist Please certify the completion of the following installation requirements by placing an (X) in the appropriate box. 1. The tanks and piping are corrosion resistant and approved for use by State and Federal Laws.	
 Excavation, backfill and compaction completed in accordance with NFPA (National Fire Protection Association) 30(96), API (American Petroleum Institute) 1615, PEI (Petroleum Equipment Institute) RP100-94 and the manufacturers' specifications. 	
 Tanks and piping pretested and installed in accordance with NFPA 30(96), API 1615, PEI/RP100-94 and the manufacturers' specifications. 	
 Steel tanks and piping are cathodically protected in accordance with NFPA 30(96), API 1632, UL (Underwriters Laboratory) 1746, STI (Steel Tank Institute) R892-89 and the manufacturers' specifications. 	
5. Tanks and piping tested for tightness after installation in accordance with NFPA 30(96) and PEI RP100-94.	
 Monitoring well(s) or other leak detection devices installed and tested in accordance with Section 62-761.640, Florida Administrative Code (F.A.C.) 	
7. Spill and overfill protection devices installed in accordance with Section 62-761.500, F.A.C.	
8. Secondary containment installed for tanks and piping as applicable in accordance with Section 62-761.500, F.A.C.	
Please Note: The numbers following the abbreviations (e.g. API 1615) are publication or specification numbers issued by these inst	itutions.
derground Pollutant Tank Removal Checklist	
1. Closure assessment performed in accordance with Section 62-761.800, F.A.C.	$\overline{\mathbf{x}}$
2. Underground tank removed and disposed of as specified in API 1604 in accordance with Section 62-761 800 F.A.C.	X

DEP Form # <u>42-761-900(5)</u>
Underground Scornge Thek Invisitation
Form Title Removal Form for Certified Contractors
Effective Date <u>December 10, 1990</u>
DEP Application No.
(Filled in by DEP)

Certification

I herby certify and attest that I am familiar with the facility that is registered with the Florida Department of Environmental Protection; that to the best of my knowledge and belief, the tank installation, replacement or removal at this facility was conducted in accordance with Chapter 489 and Section 376.303, Florida Statutes and Chapter 62-761, Florida Administrative Code (and its adopted reference sources form publications and standards of the National Fire Protection Association (NFPA), the American Petroleum Institute (API), the National Association of Corrosion Engineers (NACE), American Society for Testing and Materials (ASTM); Petroleum Equipment Institute (PEI); Steel Tank Institute (STI); Underwriters Laboratory (UL); and the tank and integral piping manufacturers' specifications; and that the operations on the checklist were performed accordingly.

US NAVY - PUBLIC WORKS CENTER, PENSACOLA, FL	NA
(Type or Print)	PSSSC Number
Certified Pollutant Tank Contractor Name	
Pollutant Storage Systems Contractor License Number (PSSC)	
	3/28/97
Certified Tank Contractor Signature	Date
PAUL R SEMMES, PE	Duc
ENVIRONMENTAL ENGINEER	
	28 MAR 97
(Type or Print) Field Supervisor Name	Date
	3/28/97
Field Supervisor Signature	Date

he owner or operator of the facility must register the tanks with the Department upon completion of the installation. The installer must submit is form no more than 30 days after the completion of installation to the Department of Environmental Protection at the address printed at the top page one.

O.

sys

rioriaa Department of Environmental Protection

Twin Towers Office Bldg. 2600 Blair Stone Road Tallahassee, Florida 32399-2400

Form Title Opport A months out Form	***
Effective Date December 10, 1990	
DEP Application No.	
(Filled un be	DEP)

Closure Assessment Form

of storage tank systems that are replacing, removing or closing in place storage tanks shall use this form to demonstrate that a storage assessment was performed in accordance with Rule 62-761.800(3) or 62-762.800(3), Florida Administrative Code.

Please Print or Type Complete All Applicable Blanks

1.	Date	21	FEI	BRUARY 1997	
2. 1	DEP Fa	cility	D	Number: 03/8518667	3. CountyBAY
4.	Facility	Nam	e: _	US NAVY - NAVAL SURFACE WARFARE CENTER, CO	ASTAL SYSTEMS STATION
5.	Facility	Own	er: _	COMMANDING OFFICER, NSWC CSS, CODE CP2F	
6.	Facility	Addı	ess:	: BUILDING 300. COASTAL SYSTEMS STATION	
7.	Mailing	Add	ress	: 6703 WEST HIGHWAY 98, PANAMA CITY, FLORID	A 32407-7001
8.	Telepho	one N	umt	ber: (904) 235–5859	9. Facility Operator: MR MIKE CLAYTON
10.	Are the	Stor	ige '	Tank(s): (Circle one or both) A. Aboveground or	B. Underground
11.	Type of	Prod	luct	(s) Stored: DIESEL	
٠٦.	Were th	ne Tai	ık(s	(Circle one) A. Replaced B. Removed C. Closed	in Place D. Upgraded (aboveground tanks only)
	Numbe	r of I	ank	as closed: ONE 14. Age of Ta	anks:
Yes	No	Not Applie	able ,	Facility Assessment Information	
)		1.	. Was a Discharge Reporting Form submitted to the Department?	
N	_		_	If yes, When: Where:	
D X	⊠			. Is the depth to ground water less than 20 feet? . Are monitoring wells present around the storage system?	
				If yes, please specify	☐ Water Monitoring
	⊠ □	EX.	4.	. Is there free product present in the monitoring wells or within the . Were the petroleum hydrocarbon vapor levels in the soil greater t	e excavation?
_	u	,	J.		Soil sample(s)
	X		6.	. Were the petroleum hydrocarbon vapor levels in the soils greater	than 50 parts per million for diesel/kerosene?
	×		7	Specify sample type:	Soil sample(s)
	_	•	7.	(See target levels on reverse side of this form and supply laborate	bry data sheet(s).
		风		. If a used oil storage system, did a visual inspection detect any dis	scolored soil indicating a release?
	及		9.	. Are any potable wells located within 1/4 of a mile radius of the fi	acility?
Z,			10.	Is there a surface water body within 1/4 mile radius of the site? I	I yes, indicate distance:
•			11.	. A detailed drawing or sketch of the facility that includes the stora	ge system location, monitoring wells, buildings,
		E	12	storm drains, sample locations, and dispenser locations must account in a facility has a pollutant storage tank system that has both gase	oline and kerosine/diesel stored on site, both EPA
	_		14	method 602 and EPA method 610 must be performed on the group	nd water samples.

DEP Form #_62-761 90046	
Form Title Octave Amount	est. Com
Effective Date December 1	1,1990
DEP Application No	
	(Pilled in by DEP)

13. Amount of soils removed and receipt of proper disposal.

14. If yes is answered to any one of questions 5-9, a Discharge Reporting Form 62-761.900(1) indicating a suspected release shall be submitted to the Department within one working day.

15. A copy of this form and any attachments must be submitted to the Department's district office in your area and to the county within 60 days of completion of tank removal or filling a tank with an inert material.

Signature of Owner

Signature of Person Performing Assessment

PAUL R SEMMES, PE ENVIRONMENTAL ENGINEER

Title of Person Performing Assessment

4/30/97 Date

2/21/9/1

State Ground Water Target Levels That Affect A Pollutant Storage Tank System Closure Assessment

1. For Gasoline (EPA Method 602 or equivalent):

2. For kerosene/diesel (EPA Method 610 or equivalent):

a. Polycyclic Aromatic Hydrocarbons (PAH)
(Best achievable detection limit, 10 ug/l maximum)

- a. Benzene 1 ug/l
- b. Total VOA 50 ug/l
 - -Benzene
 - -Toluene
 - -Total Xylenes
 - -Ethylbenzene

c. tert-butyl methyl ether (MTBE)

50 ug/l

Summary of OVA Readings

Closure Assessment Report Underground Storage Tank Building 300 Coastal Systems Station Panama City, Florida

Hand Auger Sample No.	Depth (Feet)	Unfiltered (ppm)	Filtered (ppm)
SS-1	4	<1	<1
SS-2	4	<1	<1
SS-3	2	<1	<1
SS-4	8	<1	<1
SS-5	8	<1	<1
SS-6	8	<1	<1
SS-7	8	<1	<1
1			

Readings for unfiltered samples are total hydrocarbon readings including methane; readings for filtered samples are methane only.

Notes: ppm = parts per million.

Navy Public Works Center

Environmental Laboratory

Bldg. 3887, Code 920

NAS Pensacola, FL 32508 Phone (904) 452-4728/3642

DSN 922-4728/3642 FAX (904) 452-2799/2387 Client: Address:

NPWC Environmental Bldg. 3887, Code 910

NAS Pensacola,FL 32508 Received Date:

Phone #: 452-3180

Paul Semmes Contact:

Analytical Report

Total Volatiles by Method 8260

Lab Report Number:

71246

Sample Date:

03/25/97 03/27/97

Sample Site:

Eglin, Tyndall, or CSS-P.C.

Job Order No.: 181 5004

FAX (904) 452-2799/2387 Contact:				mmes	
LAB Sample ID#	1-	71246			
Sample Name / Location	Bidg. 300 MW				
Collector's Name	S. Dueitt, R. Spencer				
Date & Time Collected		03/25/97 @ 10-	43	•	
Sample Type (composite or grab)		Grab			
Analyst	1	J. Moore			
Date of Extraction / Initials	 	03/27/97 JM			
Date of Analysis	+	03/27/97			
Sample Matrix	+	GW			
			×		
Compound	-}		<u> </u>	Det.	
Compound		_,,,,		Det.	
Name	1-	71246	units	Limit	Flags
Benzene	BDL		ug/L	1	
Bromobenzene	BDL		ug/L	1	
Bromochloromethane	BDL		ug/L	1	<u> </u>
Bromodichloromethane	4	6	ug/L	1	ļ
Bromoform	BDL		ug/L	2	
Bromomethane	BDL		ug/L	3	
n-Butylbenzene	BDL		ug/L	1	
sec-Butylbenzene	BDL		ug/L	1	L
tert-Butylbenzene	BDL		ug/L	2	
Carbon Tetrachloride	BDL		ug/L	1	
hiorobenzene	BDL		ug/L	1	
	BDL		ug/L	1	
Chloroform		22	ug/L	1	
Chloromethane	BDL		ug/L	1	
2-Chlorotoluene *	BDL		ug/L	1	
4-Chlorotoluene *	BDL		ug/L	1	<u> </u>
Dibromochloromethane .		1	ug/L	1	
1,2-Dibromo-3-chloropropane *	BDL		ug/L	5	<u> </u>
1,2-Dibromoethane	BDL		ug/L	1	
Dibromomethane	BDL		ug/L	1	
1,2-Dichlorobenzene	BDL		ug/L	1	
1,3-Dichlorobenzene	BDL		ug/L	1	ļ
1,4-Dichlorobenzene	BDL		ug/L	1	
Dichlorodifluoromethane	BDL		ug/L	1	
1,1-Dichloroethane	BDL		ug/L	1	
1,2-Dichloroethane	BDL		ug/L	1	ļ
1,1-Dichloroethene	BDL		ug/L	1	
cis-1,2-Dichloroethene	BDL		ug/L	1	
trans-1,2-Dichloroethene	- BDL		ug/L	1	
1,2-Dichloropropane	BDL		ug/L	1	
1,3-Dichloropropane	BDL		ug/L	1	
2,2-Dichloropropane	BDL		ug/L	1	+
1,1-Dichloropropene	BDL		ug/L	1	
Ethylbenzene Ethyl oth	BDL		ug/L	1	
Ethyl ether *	BDL		ug/L	1	
Hexachlorobutadiene	BDL		ug/L	2	+
2-Hexanone *	BDL		ug/L	1	+
Isopropylbenzene	BDL		ug/L	1	<u> </u>
p-isopropyitoluene	BDL		ug/L	1	

Navy Public Works Center

Environmental Laboratory

Bldg. 3887, Code 920

NAS Pensacola, FL 32508

Phone (904) 452-4728/3642 SN 922-4728/3642 FAX (904) 452-2799/2387

NPWC Environmental

Address: Bidg. 3887, Code 910

NAS Pensacola,FL 32508

Phone #: 452-3180 Contact: Paul Semmes

Analytical Report

Total Volatiles by Method 8260

Lab Report Number:

71246

Sample Date: Received Date: 03/25/97 03/27/97

Sample Site:

Eglin, Tyndall, or CSS-P.C.

Order	No.:	181 5004
-------	------	----------

FAX (904) 452-2799/2387		Contact:	Paul 5	emmes	
Compound				Det	
Name	1-	71246	units	Limit	Flags
Methylene Chloride	BDL		ug/L	1	
Methyl ethyl ketone (MEK) *	BDL		ug/L	2	
Methyl isobutyl ketone (MIBK) *	BDL		ug/L	1	
Methyl-tert-butyl ether (MTBE)	BDL		ug/L	1	
Naphthalene	BDL		ug/L	1	l
n-Propylbenzene	BDL		ug/L	1	
Styrene	BDL		ug/L	1	
1,1,1,2-Tetrachioroethane	BDL		ug/L	1	
1,1,2,2-Tetrachloroethane	BDL		ug/L	1	
Tetrachloroethene	BDL		ug/L	1	
Toluene	BDL		ug/L	1	
1,2,3-Trichlorobenzene	BDL		ug/L	1	
1,2,4-Trichlorobenzene	BDL		ug/L	1	
1,1,1-Trichloroethane	BDL		ug/L	1	
1,1,2-Trichloroethane	BDL		ug/L	1	
Trichloroethene	BDL		ug/L	1	
Trichiorofluoromethane	BDL		ug/L	1	
1,1,2-Trichloro-1,2,2-Trifluoroethane *	BDL		ug/L	1	
1,2,3-Trichloropropane	BDL		ug/L	1	
1,2,4-Trimethylbenzene	BDL		ug/L	1	
1,3,5-Trimethylbenzene	BDL		ug/L	1	
Vinyl Chloride	BDL		ug/L	1	
m,p-Xylene	BDL		ug/L	1	
~Xylene	BDL		ug/L	1	

SURROGATE SPIKE RECOVERIES

	Acceptance		
	Limits	Percent Recovery	
1,2-Dichloroethane-d4	75-133	103	
Toluene-d8	86-119-	100	
Bromofluorobenzene	85-116	102	

Explanation of Flags:				
COMMENTS :	<u> </u>			
•				
BDL = Below Detec	tion Limit. ug/L = mic	crogram per Liter. ug/Kg = microgram per Kilogi	ram. *= FL HRS certification p	ending.
A		malan	D	
Approved		Jerry Dees, Laboratory Director	Date: 4/9/97 Report Genera	

Navy Public Works Center

Environmental Laboratory

Bldg. 3887, Code 920

NAS Pensacola, FL 32508 - 6500

Phone (904) 452-4728/3642 DSN 922-4728/3642

Client:

NPWC Environmental

Address: Bldg. 3887, Code 910

NAS Pensacola,FL 32508 Received Date:

Phone #: 452-3180 Contact:

Paul Semmes

Analytical Report

610 PAH's by Method 8270

Lab Report Number:

71246

Sample Date:

03/25/97

Sample Site:

03/27/97

Eglin, Tyndall, or CSS-P.C.

Job Order No.:

181 5004

	-,		Paul Se	- Innines	
LAB Sample ID#	1-	71246			
Sample Name / Location		Bldg. 300 MW			
Collector's Name		S. Dueitt, R. Sp	encer		
Date & Time Collected		03/25/97 @ 104	43		
Sample Type (composite or grab)		Grab			
Analyst		M. Chambers			
Date of Extraction / Initials		03/31/97 JJ			
Date of Analysis		04/02/97			
Sample Matrix		GW			
Dilution			×		1
Compound				Det.	
Name	1-	71246	units	Limit	Flags
Acenaphthene	BDL		ug/L	2	
Acenaphthylene	BDL		ug/L	2	
Anthracene	BDL		ug/L	2	
Benzo(a)anthracene	BDL		ug/L	2	
Benzo(a)pyrene	BDL		ug/L	2	
Benzo(b)fluoranthene	BDL		ug/L	2	
Benzo(g,h,i)perylene	BDL		ug/L	2	
Benzo(k)fluoranthene	BDL		ug/L	3	
Chrysene	BDL		ug/L	2	
Dibenz(a,h)anthracene	BDL		ug/L	2	
luoranthene	BDL		ug/L	2	
cluorene	BDL		ug/L	2	
Indeno(1,2,3-cd)pyrene	BDL		ug/L	2	
1-Methylnaphthalene *	BDL		ug/L	2	
2-Methylnaphthalene	BDL		ug/L	3	
Naphthalene	BDL		ug/L	2	
Phenanthrene	BDL		ug/L	2	
Pyrene	BDL		ug/L	2	

SURROGATE SPIKE RECOVERIES

	Acceptance		
	Limits	Percent Recovery	
Nitrobenzene- d5	35-114	72	
2-Fluorobiphenyl	43-116	80	
Terphenyl -d14	33-141	93	

DMMENTS:		
DL = Below Detection Limit.	ug/L = microgram per Liter. ug/Kg = microgram per Kilogram.	* = FL HRS certification pending.

4/9/97

Report Generated

CERTIFICATE OF DECONTAMINATION

It is hereby certified that the following Storage Tanks have been decontaminated by PWC Pensacola AST/UST Storage System Tank Team:

BLDG 300 NAVAL SURFACE WARFARE CENTER, COASTAL SYSTEM STATION PANAMA CITY, FLORIDA

The Storage Tanks listed above have been	triple rinsed and cleaned in accordance with
40 CFR 261.7(b)(3)(i) and have been rendered u	nuseable.
	Signature
	Paul R Semmes, PE
	Environmental Engineer Title
	4/8/97
	Date

APPENDIX D

FUEL SPILL INVESTIGATION REPORT

DEPARTMENT OF THE NAVY NAVY EXPERIMENTAL DIVING UNIT

321 BULLFINCH ROAD PANAMA CITY, FLORIDA 32407-7015 AIG

IN REPLY REFER TO:

5102

Ser 01/ 444 31 Oct 96

From: Commanding Officer, Navy Experimental Diving Unit

To: Safety and Environmental Office, Coastal Systems Station, Panama City

Subj: FUEL SPILL INVESTIGATION SUMMARY

Encl: (1) Summary of the Command Investigation of the Building 300 Fuel Spill of 7 Sep 96

1. Enclosure (1) is forwarded as requested.

TR. WILKINS III

Summary of the Command Investigation of the Building 300 Fuel Spill of 7 September 96

Attachment: Southern Earth Sciences Soil Core Sample Data Sheets

The following is a summary of the Command Investigation which determined the cause and estimated the extent of a diesel fuel spill that occurred 07 September 96 outside the NEDU Ocean Simulation Facility (OSF), Building 300. The extent of the spill was estimated using Emergency Diesel Generator (EDG) Operation Logs and fuel consumption data from the EDG manufacturer.

Findings of Fact

. ``.

On 7 September 96, a Navy sailor standing watch at NEDU started the EDG day tank refueling pump in the manual mode. The tank has a float level that indicates the fuel level. The sailor left the pump running unattended for approximately one hour, and the day tank was filled beyond capacity...

While the day tank is equipped with a piping system that returns excess fuel to the source tank, because that piping is the same internal diameter as the supply piping, it could not accommodate the seven gallon per minute delivery rate of the EDG day tank fuel pump. As a result, fuel was displaced into the day tank vent pipe, which extends outside the OSF, at the Southwest corner the building, approximately 10 feet above the top of the day tank. Eventually, fuel reached the end of the vent pipe, spilling to the ground at the Southwest corner of the OSF.

During a security check approximately one hour after leaving the pump unattended, the sailor discovered a diesel fuel spill on the floor in the OSF machinery spaces, at the base of the day tank. Realizing he'd left the pump running, he immediately shut it off. The spill was less than two quarts, and the sailor immediately took affirmative steps to clean it up, using a mop and absorbent pads. At that time, he was not aware that the spill had occurred outside the OSF.

The outside spill was discovered on 16 Sep 96, by a Florida State inspector, who was at NEDU to inspect an unused underground fuel tank that was being removed, and noticed the smell at the site of the spill. A crew was assigned to excavate the area of the spill, in an attempt to remove all fuel contaminated-soil. Soil was removed to about four feet below the surface, placed in a large dumpster, and covered with plastic sheeting until it could be properly disposed.

Subsequently, NEDU commissioned Southern Earth Science Co., Panama City, FL, to characterize the impact of the spill on the soil surrounding the OSF; the results of that study were provided to NEDU 20 Sep 96. Soil core samples were taken in the immediate area of the spill, and along the walls extending from the corner (see

enclosure). These samples strongly suggest a long history of repeated diesel fuel spills in the vicinity from other sources, as high concentrations of diesel fuel were found 10 feet deep, as far as approximately 8 feet from the corner along the South wall, and 24 feet from the corner along the West wall.

The outside diesel fuel tank has a capacity of 750 gallons. The last time it was filled prior to this incident was on 28 Mar 96. Since then, the EDG had been run a total of approximately 34.1 hours. The published EDG fuel consumption rates were used to characterize fuel consumption, based on the average electrical load the EDG was sustaining during each recording period. Based on this analysis, approximately 522 gallons had been consumed by running the EDG since 28 Mar 96.

On 24 Sep 96, the outside EDG tank was refilled, taking 654 gallons to fill it to capacity, suggesting the outside tank still held approximately 95 gallons of fuel. This accounts for a total of approximately 617 gallons of diesel fuel, leaving approximately 132 gallons unaccounted for, and presumed spilled outside the OSF in the vicinity of the vent pipe during this incident.

		A The Control		- Control of the Cont	The Sandy State of the State of	A. 27 W - 17
]				***************************************		
]	:				1	i ja
],3					; ;	•
٦			FIELD.	ova data		
1	SITE N	色し			JOB NO.	•
1	.Date 9-	٥٥-۶۲	:		संदर्ध.	•
7	BORING	DEFTH FEET 1	SOIL CLASSIFICATION	(PDH) FILTER M\O	FILTER (PPH)	CORR. READING (PPM)
	B-1	41	Bottom .	160.0	1.0	92.0 odor
14104		7' 1		- 860.0		660,0 5+60c
ר'		10'		- 71000	850.0	7200.0 alor
J .		13'		71000	>000.0	3 0400
•						950 0
•			رين ين ين بايد الأرب الأولى التي الله الله الله الله الله الله الله الل			
			بغ ب کر ہے جہ فی کہ جہ حصوص کا محبوب ہستانی			
~ ~	B-2.	2'	Botton	240	O	24.0 S1 &b
_		5'	191400	5.4	Ø	5.4 51 alac
72' Cut		7'	/	5.8	1	5.8 510doc
ا		10'	<u></u>	920.0	900.0	20.0 - 31 Wor
7		18'		71000	<u> </u>	
_		18		12100	71000.0	JL OCK
	~~~~				<u> </u>	Ch may (a) changed and changed the control and changed the changed the changed the changed the changed the changed the changed
٦ .	7 2				1	70 10 1
<u>ا</u> .	B-3	1'	Fast local	3.0	g	30 No oder
. ]	0 ./	1,0	0 0 1 1 1		0 4	000 51 1
	<u>B-4</u>	11	Soft Wall	32.0	3.0	29.0 51 de
	BS	12/		7 :-		
	<u>C</u> 2	3'	South Will	3.0	8	3.0 St oclar
, ]	A-12	2'	laled 111011	100,0	8	(40 odor:

		rield (	ATAD AVO	· •		
SITE N	ED <i>U</i>			. סא פסו	\ <u>`</u>	
DATE 9	-20-96			TECE.		
DKINGE ). c	Depth Feet)	SOIL CLASSIFICATION	W/O FILTER (FPK)	VETTA FILTER (PSM)	CORR. READING (PPM)	;
8-8	1 TH	Worth Wall	7:0	Ø	2.0	Slodor
	3'TA	North Vital	(.0	0	1 , .	
B-9	<b>1</b>	در میکند کی در میکند که میکند شدید کردند که در این میکند کرد در این میکند که در این میکند که در این میکند که د بر میکند کی میکند که در میکند که در این میکند که در بر این در این میکند که در این در این میکند کرد میکند کرد م	(.0	Ø	1.0	, , , , , , , , , , , , , , , , , , ,
-	65'	, d types a state of the project and a second date of the	Ø			•
	10'		>1000.0	71000.0	?	Sloder
						n
	<u>.</u>	·		7		······································
B-10.	31		90.0	(0.0	80.0	de
	7-		22.0	8	22.0	Slode
	8.		100.0	0	100.0	Oler
474						
311	11-	······································	50	6/	50	No abr
	3'		·ø		Ø	
	7'		4		Ø	
	-91		Ø		0	ومسني
جن عارق مشاسمة						·
B-12	1		1.0	9	1.0	
	3	الماسية فيستان والمستوان و	g		Ø	72 (1) 20 (2) 20 (2)
	8	H BALL		-		

			\$1 <b>E1</b> 0	FA DATA		
. 517	ie we	70			Joe no.	
DAT	TE 9	2-96			TECE.	
		DEPTH FEET I	SOIL CLASSIFICATION	W/O FILTER (PPM)	FILTER FILTER	CORR. READING (PDM)
* 1	3-13	1 1		.2	. Ø	.2
l 		31		3400	200	320-0 St coor
ه میسه		?'		>10000 O	300-0	72000 Stop-
土		lo'	خان المعارض ا	>1000.0	<del></del> 200∙0	2500.0 Stoder
•					·	
B-	14	(•		-1	<u> Ø</u>	. I No alor
		3/		120.0	Ø	120.0 st olar
<u></u> .		$\hat{\gamma}$		7600	220.0	540.0 Stock
Į.		jo		>(000.0)	>1000	Strong acid
	-15	B.		Ø		0
*****		3		7.0	Ø	20 5/ oder
		7		280.0	50:0	230.0 Stöcker.
		10	·	7600.0	7100.0	Stodar
			:			
	3-16			ø :		8
		3		Ø		9.
•		?		$\phi$		9
		40		Ø.		9
		-		,		
-	<u>B</u>					
		Ī	1		1	1

](_

ATAC AVO CLEIF SITE NEON JOB NO. DATE 9-20-76 ಗುಂಡ. BORING DEPTH CORR. MITH SOIL ष/० 4 (FEET) CLASSIFICATION READING (PPM) FILTER FILTER ( PPK ) 1 5541 B:17 31 ø B 9 Ø No odar Mike Cross Lisa Ker

#### **APPENDIX E**

# **SOIL BORING LOGS**

														·	
												PROJECT:		BORING NO .: SBO	1
												c70 0027		TOTAL DEPTH: 12	
												JOB NO.: 7540		LOGGED BY: 6. 6	
												PROJ. MGR: Paul Callisa		EDITED BY:	
		/		1	,	,	,	~				DRILLING CONTRACTOR: 7	_	<u> </u>	
		50,	e !	30,:-	$\zeta \lambda$	• < -	Lin	Fi	م سر				robe Un	· <i>L</i>	· · · · · · · · · · · · · · · · · · ·
				0	/								Ango	_	
													1:2 5000n		
												i	cect Pu	٠,4	<del></del>
												HAMMER WT: NA		OROP:	
												STARTED TIME: //: 2	5-	DATE: 3/18/97	<u>,</u>
												COMPLETED TIME: /2:		DATE: 3/18/9-	
												BORING DEPTH (ft.)	12'	BOREHOLE DIA.:	2 1/4"
γ		<u>-</u>	l				$\top$					CASING DEPTH (R.)	NA	DONE TOLE DIA.	-7
	ļ									,		WATER DEPTH (ft.)	08'	<del></del>	<del> </del>
							3		Î				8	<del></del>	
		İ		ED			P P	Σ	(PP		CODE	TIME:	<u> </u>		
			z	VER			Ş	G _D	Š	_	Š	DATE:		110/07	L
SAMPLE DEPT	SAMPLER TYPE	z	INCHES DRIVEN	NCHES RECOVERED			UNFIL TERED OVA (PPM)	FILTERED OVA (PPM)	CORRECTED OVA (PPM)	DEPTH IN FEET	OR ASTM	BACKFILLED TIME: 12:10	DATE: 3		
C)	ER	3/6-1	SDF	S RE	J. S.		ERI	EO	L)	Z	A.	TOP OF CASING ELEV.:		DATUM:	
MP	MPL	BLOWS/6-IN.	뿕	붓	MOISTURE	ODOR	FILI	TER	RRI	PT	uscs	AMOUNT OF FREE PROCUCT	:		
ζ,		ಹ	Ĭ.	ž	Σ	8	<u>  5</u>	11	18	<u> </u>	5	RISE/FALL OF WATER TABLE	: -	TIME INTERVAL:	
	$\uparrow$		1		<u> </u>					0		LITHOLOGIC DESCRIPTION :	·	<del></del>	
0-1	55	NΑ	1	12		NO.	NO	•	NO	I W	]		· · · · · · · · · · · · · · · · · · ·		
		1	٦			1			<u>.                                    </u>	] 1 <u>[X</u>					
			4		1					l V	]				
1-2	1		1	12	0.2		NO	-	ND	2	]	Sand, light gray, Fi	12 Grain	ned, no fines	
	1		1			П				1 1	1	dry	7	-	
2-3	55		1	12	1		1			3 1	5ρ	0			
			2			$\sqcap$									
3-4	1		1	12	000		ND	-	00	₄ ⊼	1	Sal while Fine	ا مدند د	von claus	
	1		不		<del>                                     </del>	$\Box$	+				Ĭ	no Fines deu	9 - 41-12	V-7 21-427,	
4-5	55		}	12		.					1	no times, dry			
	72		\ <del>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</del>	<del> </del>	1	††	1	-	+	1 7	7				
5.6	].		1	12	00		NO	-	NO	1	4	<u> </u>	<b>0</b> 4 - : -	4.	
	*	$\vdash \vdash$	<del>                                     </del>	-	4 0	+	<del>                                     </del>	<del>                                     </del>	+	l elv	H	1111 / Q	01-7	Time grained	
6-7	1			12						1 .1	4	little to no Iin	<del>, 42</del>		
	55	++	++	-	1	╁╂	-	-	<del> </del>	7	150				
7-8	1		74	12	Mick		20	-	m	1 1	$H^{-1}$		····· — · -	4 .	4.
	<u> </u>		+ *		1.	$\sqcap$		-	+-	-  ° -{	Ŋ	Sond, yellowish	ocange.	, very fine to	+~ <u></u>
8-9	1			12	1.					H	A	grained, some ,	مر بهد:	v: s+	
	<u> 55</u>	++	<del>                                     </del>	+		+	+	-	+	) e	У			<del></del>	
9-10			7	12	Saka		, NA	NA	NA	4 1	Д				
Ĺ.	LV	LY	$T \neq I$		٦	$oldsymbol{oldsymbol{oldsymbol{eta}}}$		1,,,,	14.4	10/	<u> </u>	1		· · · · · · · · · · · · · · · · · · ·	

THE STATE OF THE S					1	1	1	,	<del>,</del> -	, — · ·	<del></del>	·	SHEET 2 OF 2
Sen list gen yen in the face grained.  All I was to have g	РТН РЕ	ows	IVEN	C.V.D.	ISTURE	XOR	FILTER	TERED	RRECT	РТН		S OR M CODE	PROJECT: CTO 0027 NO.7540 BORING NO.58
		7	1			T					N N		Sond light gray, very fine to fine graine.
2 A F. 65  5 5  6 6  7 7  7 7  8 8  9 9  1 1  1 1  2 1  3 1  4 1  5 1  6 7  6 6  7 7  8 8  8 8  9 9  9 9  1 1  1 1  1 1  1 1		11	l	1	13			ļ ·		1	$\langle \rangle$	*	little Fines, Gaturaled
	II. B	4	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			NA	NA	NA	2	Λ	E.aB	
		-	<u> </u>	<u> </u>	-					3			
		-	<u> </u>	-	-			-		4			
										5			
		<del> </del>		<u> </u>							П		
		-	+-		-		-	-	-	7			
			<del> </del>	<u> </u>	-	<del> </del>			<u> </u>	8			
		-	1-	<u> </u>			1	<u> </u>	<u> </u>	9	$\vdash$		
											F		
5				<u> </u>						1 "	<u> </u>		
5 7 8									-	] ,			
										_ 2	<u> </u>		
										]	Ę		
5													
7			+	$\top$			-	1		<b>†</b> '	_		
7			+		+		-	-		1 5	5		
8			-	-		-	-	+-	-		5		
			-	-	-	-		-	-	-	7		
9		-	-			+		-	-	┥,	8	1	
				_		-				_	9	1	

. . .

.

														····	
												SHEET		OF	
												PROJECT:		BORING NO .: SE O	
												CTO 0027			 z.′
												JOB NO.: 7540		LOGGED BY: 6.6	
												PROJ. MGR: Paul Call.	(0.7	EDITED BY:	<u> </u>
		_						_				l .	TE 6		
		5.	e l	3001.4	, L.	cal	·~	Figu	!			DRILL RIG TYPE: State	probe		
	•	•	_	•	U			•				ORILLERS NAME: Jaso		lin	
													1:4 5000 n		
												DRILLING TECHNIQUE : 0:	ret Pueb	<b>\</b>	
												HAMMER WT: VA		DROP: -	
												STARTED TIME: /2:3		DATE: 3/18/97	
										,		COMPLETED TIME: /3:3		DATE: 3/18/9	
L		r	1		1		1 1					BORING DEPTH (fL)	12'	BOREHOLE DIA.:	24"
}			1									CASING DEPTH (ft.)	NA		
									(1			WATER DEPTH (ft.)	e 8'	<u> </u>	
				ا و			PP M	3	РРМ		DE	TIME:	1		
			_	ERE			\$	(PP	VA (		001	DATE:		<u> </u>	
PT	ΥPE	نجا	IVE	S			o d	VA	o d:	EET	STR	BACKFILLED TIME: 13:30	DATE: 3	//8/97 BY	756
E DE	ER 1	11.9/9	S OR	3 RE	JRE		ERE	ED (	CTE	Z.	OR ASTM CODE	TOP OF CASING ELEV.:		DATUM: -	
SAMPLE DEPTH	SAMPLER TYPE	BLOWS/6-IIN	INCHES DRIVEN	INCHES RECOVERED	MOISTURE	ODOR	UNFIL TERED OVA (PPM)	FILTERED OVA (PPM)	CORRECTED OVA (PPM)	DEPTH IN FEET	uscs (	AMOUNT OF FREE PROCUCT	<u> </u>		
NS N		표	<u>¥</u>	≧	Σ	8	3	표	8	DE	S	RISE/FALL OF WATER TABLE	:	TIME INTERVAL :	-
	个	NA	1			9				0		LITHOLOGIC DESCRIPTION :			
0-1	55			12		Z				$\bigvee$					
		Ц	1 >	1.5		7	NO		٥٠	1 1		Sond, light groy	Fine gra	ined, occasional	1 roots
1-2	1		1	1,2						∤		and dark organi	c Matter	, little fines	dry
1	V		14	12	04		NO	_	NO	2	sp				
2-3	1		1	12						}			<del></del>		
-			11	1						]∆					
3-4	35		24	12	0~		NO	_	NP	∀	}	<del></del>		<del></del>	
-	1 X	+	上	-	14.0			-	-	4	30	Sond white, Fin	u grain	rd, very clea	, n,
4.5	1		1 2	12						5 X	1	no tines, dry			
	55		17				1	-		1 16					
5-6	1			12	02		NO	-	NO	6 1	1	Sand yellowich	Diens	e. Fine do med	i-m
1-7	1		一个							$1  \overline{V}$	4	grained Some no	n play hie	Fines, dry	
	45		1	12		Ш				7	] '	/ /		' }	
7-8	,		7-	12	No. 14X		NO	-	NO		4			A	
<del></del>	<del>- Y</del> -	$\downarrow \downarrow$	<u> </u>	100	W.,	$\coprod$	120		100	] a		Sond light bion	n very	Fine to Fine grain	ned,
9.9	1		1	12	7					}	-	1:44 Fines moi	5+		
	+27	$oldsymbol{+}$	12	+	1.3	++	<del> </del>		-	] 	4			<del></del>	
9-10	1		1	12	200	یل ا	WA	NΑ	NA	<del> </del>	-		<del></del>	<del></del>	

٠ ۱۸

													SHEET Z OF Z
рерти	TYPE	вгомѕ	→ DRIVEN	REC'VD'	MOISTURE	ODOR	UNFILTER	FILTERED	CORRECT	ОЕРТН		USCS OR AS I M CODE	PROJECT: CTO 0027 NO.7540 BORING NO.5802
10.11		NΑ	$\uparrow$	NΑ		por!	ΝA	NA	<u> </u>	1	A	5P	Sond, light gray, very fine to fine grained, little fines, Saturated
11/2	ant Ash		75 ->	V	Soke		N4	ΝA	NΑ	2	H	£.0.9.	
										3	_	2.0.9.	
										4		] 	
·													
		 			}			_		5			
					<u> </u>		-						
· 						<u> </u>	1			,	<u></u>		
											3	]	
				<u> </u>	-	<u> </u>	-		-		-		
											,  -		
										'	-		
									<u> </u>	-	<u>.</u>  -	<del> </del>	
_						-			-		2	-	
					-	-					3	1	
					-						4	-	
		-				_		<u> </u> .	-		5	-	
	-	-		_				-	-		6	-	
			<u> </u>			-		-			7		
								-	-		8		
		1									9	_	
	ļ										-	-	

·. ·

PROJECT: BORING NO .: SBO3 CTO 0027 TOTAL DEPTH: 121 JOB NO .: 75 YO LOGGED BY: 6. 600 de EDITED BY: See Boring housin Figure OROP: 3/18/97 STARTED TIME: 14.20 DATE: COMPLETED TIME: 14:50 DATE: 3/18/57 12' BORING DEPTH (ft.) BOREHOLE DIA .: CASING DEPTH (ft.) 081 WATER DEPTH (fL) UNFILTERED OVA (PPM) TIME: INCHES RECOVERED FILTERED OVA (PPM) DATE: INCI-IES DRIVEN SAMPLER TYPE BACKFILLED TIME: 14:50 DATE: 3/18/97 SAMPLE DEPTI BLOWS/6-IN. MOISTURE DATUM: -TOP OF CASING ELEV.: ODOR TIME INTERVAL : ~ RISE/FALL OF WATER TABLE : LITHOLOGIC DESCRIPTION: 12 ND 2 ND 2-3 NO

Ī		S/S	Z	Ö	TURE	~	TER	RED	RECT	I	300E	PROJECT: CTO 6007 NO. 7540 BORING NO. 3803
ОЕРТН	TYPE	BLOWS	DRIVEN	REC'VD'	MOISTURE	ODOR	UNFILTER	FILTERED	CORRECT	ОЕРТН	uscs code	
10-1	55	Na		13.	<u> </u>	محميمهم	NA	w	NA	1	5P	Good light gray very fine to fine grained Soud little fine sometano
11-12			434	13,4		V	WA	NA	NA	1 1/1	F. O. B.	
										3	8.0.0	
										5		
		-			-		-			6		
				<u> </u>						7		
	<u> </u>	-						-		8		
										9		
										0		
										1		
										2		
										3		
						-				1 4		
	-	-						<u> </u>		5		
		-		-						6		
	-	-	_	-		-				7		
					ļ	-	<u> </u>	-		8		
										9		

												SHEET 1 OF 2	_
												PROJECT: BORING NO.: 58	, <b>4</b>
												CTO 0027	12'
												JOB NO.: 7540 LOGGED BY: 6.	
												PROJ. MGR: Paul Calligan EDITED BY:	
												DRILLING CONTRACTOR: TEG	
	<	, 	2	•	. 1	,	/·· n	1				ORILL RIG TYPE: Strate pro be	
	/		1/	د د د د د د د د د د د د د د د د د د د		•	7-4	13				DRILLERS NAME: Jason Angolin	
												SAMPLING METHOOS: 50/2 50001	
												ORILLING TECHNIQUE: Direct Push	
				•								HAMMER WT: NA DROP: -	
						,						STARTED TIME: /5:/0 DATE: 3/18/	
												COMPLETED TIME: 16:05 DATE: 3/18/	
ļ,		<del></del>				<del></del>						BORING DEPTH (R.) 12 1 BOREHOLE DIA.:	24"
			ļ				ļ	l		·		CASING DEPTH (R) NA	
			Ì		]							WATER DEPTH (ft.)	<u> </u>
			1	۵			Mdc	ę	PPM		DE	TIME:	
_	SAMPLER TYPE		_	ERE			UNFIL TERED OVA (PPM)	FILTERED OVA (PPM)	CORRECTED OVA (PPM)	DEPTH IN FEET	OR ASTM CODE	DATE:	
F I		ا نے ا	VE	S								BACKFILLED TIME: 16:05 DATE: 3/18/97	14: TE6
E 06	ER 1	11.9/9	S DR	s RE	J. F.		ERE	ED (	CTE	<u>z</u>	JR A	TOP OF CASING ELEV.: — DATUM: ~	
SAMPLE DEPTI	MPL	BLOWS/6-IN	INCHES DRIVEN	NCHES RECOVERED	MOISTURE	DOOR	FIL	TER	RRE	РТН	uscs (	AMOUNT OF FREE PROCUCT : -	
		<u>B</u>	<u>z</u>	ž	₹.	Ö	5	_≝	8	퓝	S	RISE/FALL OF WATER TABLE : — TIME INTERVAL :	
	1	NΑ	$\Lambda$			o	. [			0		LITHOLOGIC DESCRIPTION :	
5-1	55		Į	7	649	New	M	-	פע	$\bigvee$	_ • • • •	Humas, de, K brown, organic rich	<del>,</del>
	7>		27		, ,	1				1		Sond, brown, very time to fine grains	1, /0-
1-2	1.		,	V			NO	_	ND	X	39	plasdic Fines, some organics, dry	
1	¥	1	<u> </u>	.\	Α	<b>Y</b>	,,,,,		,,,,	2/1	•	0	
2-3										3			
<b>,</b>													
3-4		<u> </u>					-			4			
4.5										5			
5-6	个	NΑ		12	020	Dierry	300	0	4 >		40	Sond, girenish gray, time grained	
	35	+	2	<u> </u>	1,0	0%,	سر	ND	300	6 <b>V</b>	7"	Stained with diesell Fre (diesel)	nel lite
6-7	1	V		12	1	1	100	No	100	7		Sand white very fine grained	Stained
7.8											38	greenish gray with direct finel ( dies	el like
<b> </b>		1	1	-				-	-	8		odor) day	
8.9										9	1		
9-10										1 1			
7				1				1		10	]		

* ...

Ŧ	ш	BLOWS	DRIVEN	REC'VD'	MOISTURE	OR	UNFILTER	FILTERED	CORRECT	ОЕРТН	USCS CODE	PROJECT: 670 0027 NO. 7540 BORING NO. 5864
DEPTH	TYPE 1	P BLO	PY DRI	خ REC	Should Start	Popular ODOR		<b>₹</b>	05 NA	E E	li	Sond, duk gray very Fine to fine grained some non plantic fine, slight direct
11-12		1	- 24 -	,~	للملي	Starry Starry			NA			72722
	. 1	_¥_	7		7	(),2.				3	iaB-	
					-					4		
										5		
										6		
										7		
						<u> </u>		-	-	8	-	
					_				-	9	-	
					_	-	_	-			-	
-		-	-	-	-	-	-	-	<del> </del>	1		
-			-			-	ļ ·	-		2		
-	-		-	-	-	-	-	+-	-	3		
-	-	-	-		+-	<u> </u>	-	-	-	4		
-	-	-	-		+	-	+	-	-	5		
-	-	-			-	-	-	-		6		
		-	-		1	+-		-	-	7		
					-			+		9		
					1				1		=	

SOIL//SEDIMENT DESCRIPTION. GRAIN SIZE, COLOR. ANGULARITY, DENSITY/CONSISTANCY

												SHEET / OF Z		
												PROJECT: BCRING NO .: S	80.5	
												CTO 0027 TOTAL DEPTH:	121	
												JOB NO.: 7540 LOGGED BY: 6	6.600de	 !
												PROJ. MGR: Paul Calling EDITED BY:		
												DRILLING CONTRACTOR: TEG		
		4		2			1	J.	E	jour	,	ORILL RIG TYPE: Stata probe		
		۶	e	100	יר'נאי	7 '	7000	20,00	' (	74.	•	DRILLERS NAME: Jason Angolin		
					i	U						SAMPLING METHODS: Hand Age (grab) / 501.2	spoon	
												DRILLING TECHNIQUE Dicect Push	,	
												HAMMER WT: NA DROP: -		
												1	3/97	
													197	<del></del> -
			1		· · · · · · · · · · · · · · · · · · ·	<del></del> 1					T .	BORING DEPTH (ft.) /Z / BOREHOLE DIA	.: 2%	<u>r''</u>
										,		CASING DEPTH (t.)		
İ					.	i	_		•			WATER DEPTH (ft) @ 8 '		
				Q.			PP	Ω	ιРРΛ		CODE	TIME:		
_			-	ÆRI		Ì	× ×	(PP	VA.	_	00 1	DATE:		
EPTI	ГYР	<u>-</u>	3.VE	CO:			UNFIL TERED OVA (PPM)	FIL TERED OVA (PPM)	EDC	FEE	OR ASTM	BACKFILLED TIME: 17:35 DATE: 3/18/57	3Y: 7E 6	
E D	ER	S/6.1	S DF	s Rí	3		TER	ЗED	ECT	<u>z</u>	OR.	TOP OF CASING ELEV.: DATUM:	<del> </del>	
SAMPLE DEPTII	SAMPLER TYPE	BLOWS/6-IIN	INCIHES DRIVEN	INCHES RECOVERED	MOISTURE	ODOR	F.	LTE	CORRECTED OVA (PPM)	DEPTHIN FEET	uscs	AMOUNT OF FREE PROCUCT :		
3	ે જે	<u> </u>	_ ≧	<u>z</u>				Ē	ŭ	٦	5	RISE/FALL OF WATER TABLE : TIME INTERVAL	<u>:</u>	
		NΑ	<b>∧</b> ∕A	Νħ		hine				0		LITHOLOGIC DESCRIPTION :		
0-1	HA			1	8:10	ή.	NO	-	ND	<del> </del>	<b> </b>	Humas, dak brown, organic rich	·	
		┼┼-			1				ļ	, A		Sond, brown, very Fine to Fine gr	ained,	
1-2	141	1		1		,	20	-	NO	2	150			
-	<del> </del>	-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4	1	4			-	' -	1	Matter, dry		
2.3											1			
										1 1	1			
3-4										4	1			
4.5										] [				
<u>ب</u>	   	<u> </u>	1 0	<u> </u>	ļ	<u> </u>				5	,			
طري	55	NA	25	12	64	0.5	110	ND	110		350	no Fines ( diesal like odor),	1.74/-	<u></u>
67	1.		1	12	0.2		50	٥٠٨	50	1	A			
8	1	\ <u>Y</u>	<del>  \</del>		100	Y	<del> </del>	<u> </u>		'	4			
٦٠٥										a				
8.9											]			
0									<u> </u>	9	_			
9-10											4			
L.		1	1	1	1	1	1	!	1	10				

					Щ		~		F	ı ———	Γ—-	757
王	,,,	NS	ÆN	Ċ Ċ	MOISTURE	<u>ج</u>	UNFILTER	FILTERED	CORRECT	E	USCS CODE	PROJECT: 670 00 27 NO. 7540 BORING NO. 5805
рертн	туре	BLOWS	DRIVEN	REC'VD'	MOM /	ODOR	UNF	FILT	COR	рертн	JSCS	
		MS	1		1 . Y	1 0			<del></del>		1	Sold dock gray very fire to Fine
10-9	1			1/2	44	1:2	105	NA	M	1 []	3P	Grained some non plastic fines.
11-2			600	\1	G.Y	Div.				I X		Glight dirsel odos, Schulled
(1-	1	1	$\downarrow$		14)	الع ق	<b>V</b>		1	2 🚺	2.0.3	
	·						}			-		
-		<u> </u>			-	<del> </del> -			-	3		
										4		·
					-					" -	1	
					}	1				5	1	
					-							
		<u> </u>								6		
		}							1			
-						<u> </u>			-	7	1	
										-	1	
						├	<del> </del>			8	1	
}						}				9	1	
	-		-	-						1 1	1	
	ļ		ĺ							0	1	
										1 [	]	
			<u> </u>							1		
										-		
	<u> </u>				ļ	<u> </u>	<del> </del>		<u> </u>	2	-	
	Ì	Ì					1			-	-	
<b> </b>	<del> </del>	-	<del> </del> -	-		-			-	3 -	1	
									1	1	1	
-				<del>                                     </del>		+			+-	" -	†	
		}	1				l		}	5	1	
											1	
										6	]	
											]	
										7		
										-	}	
-	-		<del>                                     </del>	<u> </u>			<del> </del>		-	8		
										-	-	
	-		-	-	+-	+-	-		+	9	1	
											1	
	L	Ь.		<u> 1</u>		٠		ــــــــــــــــــــــــــــــــــــــ	Ь	ـا لـ	ال	<u> </u>

-												F	PROJECT: BCRING NO.: 58
												}	TOTAL DEPTH: /
													JOB NO.: 7540 LOGGED BY: 6. 6
												<u>_</u>	PROJ. MGR: Paul Calligon EDITED BY: DRILLING CONTRACTOR: TEG
		/	0	,	/		/	f	-	_			DRILL RIG TYPE: Strate probe
		H	e b	/ _رسم	) h	اه د حا	h~~		izur	<b>\P</b>			DRILLERS NAME: Jason Angolin
				U	,								SAMPLING METHODS: Hand Agar (grob) Split Sp
													DRILLING TECHNIQUE: Dice of Pus L
				•								· -	HAMMER WT: NA DROP: -
													STARTED TIME: 7:25 DATE: 3//9/9
													COMPLETED TIME: 8:15 DATE: 3//9/9 BORING DEPTH (ft)   12   BOREHOLE DIA.:
			1						Ī		Т		CASING DEPTH (IL)
													WATER DEPTH (R) Ø8'
			ļ				PM)		PM)			Ī	TIME:
				EREC			/A (P	РРМ	/A (P			000	DATE:
PTE	үРЕ	_	IVEN	COVI			o d	) V.	όα	EET	-	STM	BACKFILLED TIME: 8:15 DATE: 3//7/57 B
E DE	ER T	11-9/9	S DR	S RE	URE		ERE	EDC	CTE	<u>Z</u>	1	ō 1	TOP OF CASING ELEV.: DATUM: —
SAMPLE DEPTH	SAMPLER TYPE	BLOWS/6-IN.	NCHES DRIVEN	NCHES RECOVERED	MOISTURE	ODOR	UNFILTERED OVA (PPM)	FILTERED OVA (PPM)	CORRECTED OVA (PPM)	DEPTH IN FEET		SS	AMOUNT OF FREE PROCUCT :
8	જે	<u> </u>		_ <u>₹</u>	Σ	ō	3	<u> </u>	Ö		$\dashv$		RISE/FALL OF WATER TABLE : TIME INTERVAL :
						_				O	$\forall$		Humbs dark brown organic malter
0-1	HΑ	ŅΑ	NΑ	MΑ	00	120	NO	_	NO	1	X		Send light grey very fine to fine go
												SP	1.44 to no fines, occasional root
1-2	βA	1	1	1	V	1	ND	-	100	2	M	٠,	Fragments, dry
2-3													3 , 0
1						ļ			-	3	Ц		
2-Y			İ								Н		
		-	<u> </u>		<del> </del> -					4	Н		
4.5						·				5	Н		
	1	NA	7			,					V		Sand light gray, very fine to fine a
5-6				12	07	Nous	NO	-	ND	6	X	\$	some non plastic Free, day
6-7	3		-25	17.	0.40	Note	ND			ŀ	Y Y		
. 0	1	1	1	10	02	In	<i>N</i> 10	<del>                                     </del>	ND	7	ĮΔ		Sond as above with goods and
	1									.	$\vdash$	1	muttos.
7-8	I				1	1	1	1	j.	1 8	3	1	l .
7-8 8-9			<del>                                     </del>		1	1	İ			1		1	

	-		_
SHEET		OF	L

_		Ø	z	jo	rure		TER	RED	ECT	r		ODE	PROJECT: (70 00)7 NO. 7546 BORING NO. 580 C
ОЕРТН	TYPE	BLOWS	DRIVEN	REC'VD'	MOISTURE	ODOR	UNFILTER	FILTERED	CORRECT	ОЕРТН		uscs cope	
10-4	65	NA	1	7	4 horas	N. W.	NA	NA	NΑ	K 1	H		Sond light grey, wan Fine to Fine grained, non placked Fines, so harmful
11-12		6	39	,2	ζ.	1		,	6	2	X		
	4	41	-*-		,	•					4	ē.aB	
-										3	1		
									-	4			
-									-	5	4		
	<u> </u>								_	6	7		
										7	1		
										8	_		
										9	4		
											-		
<u> </u>	-												
-	-			-						1 1	1		
-	_								-	_ 2	4		
						<u> </u>				3			
									_	4			
										5			
										6	4		
										1			
-		-	-	-				-	-	7			
			-	-	-			-	-	8			
				-	-				-	9			

PROJECT: CTO 0027 EDITED BY: See Boing Location Figure ORILLERS NAME: HAMMER WT: DROP: DATE: 3/19/97 STARTED TIME: 8:40 COMPLETED TIME: /Z :00 BORING DEPTH (ft.) BOREHOLE DIA.: CASING DEPTH (ft.) WATER DEPTH (ft.) CORRECTED OVA (PPM) UNFILTERED OVA (PPM) TIME: NCHES RECOVERED FILTERED OVA (PPM) DATE: INCHES DRIVEN SAMPLE DEPTH SAMPLER TYPE DEPTH IN FEET AMOUNT OF FREE PROCUCT: RISE/FALL OF WATER TABLE : TIME INTERVAL: LITHOLOGIC DESCRIPTION : NA NA 0-1 HA NA 048 ND ND 1-2 ND ND ND ND ND 2 ND 7-8 NA WA HA

	SHEET 2 OF 2
DEPTH TYPE BLOWS DRIVEN REC'VD' MOISTURE ODOR UNFILTER CORRECT	PROJECT: CTO 027 NO.7540 BORING NO.5807
16-11 HA NA NA NA RE NOT NA WA NA	
1 NA N N	2
2-11 1 12 V MO WA WA WA	3
13° V V 12 5° V V V	4 £.0.8-
	5
	7
	8
	9
	0
	3
	4
	5
	7
	8
	9

٠.

							-			···		······································			
												SHEE	T	OF 2	_
														우 -	フ
												PROJECT:			08
												CTO 0027			4 '
												JOB NO.: 7540	· · · · · · · · · · · · · · · · · · ·	LOGGED BY: 6. 6	
												PROJ. MGR: Paul Calli		EDITED BY:	0045
				•									TE 6		
	/			$\Omega$		1	/	,	ſ.				toprobe		<del></del>
	,	76	2	1500	iny	h	oc a h	64	rigi	ure			on Ange		
					U							1	501:1 500		
												DRILLING TECHNIQUE :	7 7 67	ns h	<del></del>
				•								HAMMER WT: V.	4	DROP: -	
													15	DATE: 3//9/9	7
												COMPLETED TIME:		DATE:	
												BORING DEPTH (ft.)	14'	BOREHOLE DIA.:	21/4"
										,		CASING DEPTH (ft.)	NA.		<del>                                     </del>
												WATER DEPTH (ft.)	1681		<b>†</b>
							(M ^c		(Mc		ш	TIME:			
				REC			4 (P	РМ)	A (P)		g	DATE:			
Ę	PE		Ä Z	OVE			00	/A (F	00'	<u> </u>	W.		rted to u	reed locations	·· <del>······</del>
DEP	R 17	₹	DRN	INCHES RECOVERED	3E		RED	FIL TERED OVA (PPM)	TEC	H 7	OR ASTM CODE	TOP OF CASING ELEV.: /D	.00	DATUM: A bit	
P.E	PLE	MS	tES.	ĘS	MOISTURE	2	ILTE	ERE	REC	Ē	s of	AMOUNT OF FREE PROCUC		9	
SAMPLE DEPTH	SAMPLER TYPE	BLOWS/6-IN	INCHES DRIVEN	Ş	ÖW	ODOR	UNFILTERED OVA (PPM)	FILT	CORRECTED OVA (PPM)	DEPTH IN FEET	uscs	RISE/FALL OF WATER TABLE		TIME INTERVAL :	<del></del>
												LITHOLOGIC DESCRIPTION			<del> </del>
0-1	<b>N</b>	AN				ρ				0	İ		0	rained, some	
0	17	1		12	on	Ce A	NO	-	NO	l ,  <del>∀</del>	SP	Sond, light groy		rumra, pour	0704.2
1	55		7							1 17	1	10013	<del>3, 5, 9</del>	· · · · · · · · · · · · · · · · · · ·	
12	1	1	d.	12	00	12x	ND	-	ND	2 1	1				
1			-								1				
2.3		İ	]							3	1				
$\overline{}$											1				
374										4	]				
4-5															
-	1		1				<u> </u>			5	}	1 1 1 1		fine to fine a	
9.6	5	NA		12	04	PART	NO	-	no	6	13P	Sond, light are	7 4.7	tine ou time g	rained,
6.7	,	$\prod$	12	12	0	11								17	
-	1	W.	<u>  W</u>	12	3	Nott	1.00	<del>-</del>	NO	7/4	4				
7.8										8	1				
8-9											1				
-	<del> </del>	-		<u> </u>		<u> </u>	<u> </u>			9	-				
9-10										-	$\left\{ \right.$				

*.. .

...

\[ \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tetx{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tetx{\texi}\text{\text{\texi}\text{\text{\texi}\text{\text{\text{\ti}\text{\text{\text{\texi}\text{\texi}\tint{\texit{\texit{\texi}\titt{\texitit}}\\text{\texit{\texi{\texi{\texi{\texi{\tet		S	Z	è	MOISTURE	~	TER	RED	RECT	H GO	PROJECT: (70 0007 NO. 7540 BORING NO. 5808
рертн	TYPE	BLOWS	DRIVEN	REC'VD'	MOIS	ODOR	UNFILTER	FILTERED	CORRECT	DEPTH USCS CODE	
10-11	1	MA	1	n	14	NND	NΑ	NA	NA	J 1∭√K	Grained, Fine of low plotocoly
11-12	55/		-24	12	4						Saturted
12/13			7	۱۶			$\top$		$\vdash$		
	4,		2				+			3 <u>/ / / / / / / / / / / / / / / / / / /</u>	
13,74	V	1	4	1~	1	1	•	<u> </u>	1	4 E.a	
					ļ 					5	
					<u> </u>  -					6	
										1 A	
										7	
-							<u>.</u>			8	
										9	
	-										
							·			1 '	
-								<u> </u>		2	
										3	
		-								4	
										5	
-										6	
										7	
										8	
								   		9	
							L			]   0   ]	

												SHEET		of	
						·				-		PROJECT:		BORING NO .: 580	9
												CTO 0027			2'
												JOB NO.: 7540		LOGGED BY: 6. 6	
												PROJ. MGR: Paul Celli	5-	EDITED BY:	
			0		1	,		<b>~</b>				DRILLING CONTRACTOR:	TEG		
	Se	e	Ber:	4	Loc	ah:	· ^	fig.	us			ORILL RIG TYPE: NA			
	<i></i>			0								DRILLERS NAME: 5-5		lin	·
													or-b	<del></del>	
												ORILLING TECHNIQUE: (+	and Aug	) · · · · · · · · · · · · · · · · · · ·	
				•								HAMMER WT: VA		DROP: -	
												STARTED TIME: 15:1		DATE: 3/19/9	
												COMPLETED TIME: 16: 0	12'	DATE: 3//9/	3"
			1	1						<del></del> -		BORING DEPTH (ft.)		BOREHOLE DIA.:	3
ļ					1							CASING DEPTH (ft.) WATER DEPTH (ft.)	081	<del>                                     </del>	<u> </u>
					1		Ξ		Î			TIME:	-	· · · · · · · · · · · · · · · · · · ·	<del> </del>
				₹ED			(PP	PM)	(PP		CODE	DATE:	1	1	
Ξ	Ę		2	OVE	Ì		OVA	A (PI	OVA	<del></del>	MC	BACKFILLED TIME: /6:00	DATE: 3	119/92 =>	756
DE P	ĭ.	Ξ	SE	SEC(	ш		чер	000	TED	ı FE	ASTM	TOP OF CASING ELEV.:		DATUM:	. / 5 6
J.E.	PLEF	VS/6	ES (	ES F	TO	œ	LTE	RE	REC	<u>≤</u> Ξ	S OR	AMOUNT OF FREE PROCUCT	·		
SAMPLE DEPTH	SAMPLER TYPE	BLOWS/6-IN.	INCHES DRIVEN	NCHES RECOVERED	MOISTURE	<b>O</b> DOR	UNFILTERED OVA (PPM)	FILTERED OVA (PPM)	CORRECTED OVA (PPM)	DEPTH IN FEET	USCS	RISE/FALL OF WATER TABLE		TIME INTERVAL:	<del>,</del>
•			-									LITHOLOGIC DESCRIPTION :	·		
,										0	_				
0-1				,						1					
12															
۲-							ļ			2		Open Trea	<u>eh</u>		
2-3											1	<del>/</del>		<del></del>	
			'						-	3_	1	<b>\</b>			
3-4										4	-	<del>}</del>			
45											] ′				
	_		<del> </del>	-	-	1.1	-	-	-	5	19	Zand, light to a	J. Gra	y, very tin	e to
حاري	HA	NΑ	MA	νA	on	000	40	<b>N</b> O	40	_ 6 X		Greenich/sullon:	sh St	ins (diesel)	
6-7					DM		100	20	100		4	non plastic Fi	10, d	7	
7-8	-	$\prod$	††	+	Moith		NA	NA	<del> </del>	┤ ′₩		Sind, as ab	ove,	School at	08'
770	$\coprod$	-	$\coprod$	$\coprod$	Nor,		104	71.17	N/4	8 <u> </u>	1				
8-9					Galaca					9	1				
910										] [	]				

١.

																	SHEE	т	2			OF_	2	
HI d 30 C	+	BLOWS	DRIVEN	REC'VD'	AND TORK	Nood St. F. Cobook	A UNFILTER	FILTERED	CORRECT S CORRECT	HLd30 1 2 3 4 5 7 8 9 0	60	PRY LIT	OJECT: THOLO Sond, Scain Sol	GIC DI do.k	ESCRIPTION SOME	TION		NO.	7540	) E	BORIN	OF_		
											H													

	· · · · · ·	· · ·	· 					<del></del>			_				
													SHEET	of <u>Ź</u>	
														P2-3	
													PROJECT:	BORING NO .: SEID	
													сто 0017	TOTAL DEPTH: 14	11
													JOB NO.: 7540	LOGGED BY: 6. 60	ode
													PROJ. MGR: Poul Calligon	EDITED BY:	
													DRILLING CONTRACTOR: 766		
		e L	0		I	ſ		r					DRILL RIG TYPE: Strata pro be	<del></del>	
'	S.M.	e l	Soci	17	ho	cahi	01	riz	un				DRILLERS NAME: Jeson Ance	lia	
	<i>)</i> '			U									SAMPLING METHODS: Split Spoon DRILLING TECHNIQUE: Direct		
													DRILLING TECHNIQUE: Direct	ur h	
													HAMMER WT: NA	DROP: -	
													STARTED TIME: 16:15	DATE: 3//9/97	-
													COMPLETED TIME: 12:00	DATE: 3/2//97	
													BORING DEPTH (ft.) 14 '	BOREHOLE DIA.:	21/4"
			ł			.	Ì						CASING DEPTH (R.) NA		
													WATER DEPTH (R.) @ 8 '		
				0			PM)	_	PM)			Ä	TIME:		
				REC			A (P	ρ	A (P			gog	DATE:	2)	
Ē	P.		Ä.	Š.			ò	<u>\$</u>	Š	ĒŢ	- 1	Σ	BACKFILLED TIME: Canoni Lad &	BY:	
DEP	R TY	Ĭ.	PR	REC	₹E		REC	Ó	) TEC	N FE		OR ASTM CODE	TOP OF CASING ELEV .: 10.17	DATUM: Qub: +-	
SAMPLE DEPTH	SAMPLER TYPE	BLOWS/6-IN.	INCHES DRIVEN	INCHES RECOVERED	MOISTURE	<u>ح</u>	UNFILTERED OVA (PPM)	FILTERED OVA (PPM)	CORRECTED OVA (PPM)	DEPTH IN FEET			AMOUNT OF FREE PROCUCT :		7
SAMI	AMI	31.0)	NC.	NC	Ö	ODOR	JNF!	FE	Son	SEP.		uscs	RISE/FALL OF WATER TABLE : -	TIME INTERVAL :	_
	1		-								十		LITHOLOGIC DESCRIPTION :		
	<b>A</b>	AN	$\mathcal{T}$			a				0	$\Box$			- , 4	. 7
0-1	1	1.0		12	00	Nova	100		ND		$\forall$	SP.	Sond dork brown, very	ine to fine grow	hed 5
	华	-	24		0	10			-	'	<del>(</del> i			c root troyme	NOS,
12	] ].		7	12	07	None	NO	-	NO		$\mathbb{H}$		Sund light acon F	ne spined, no	<del></del>
-	<u> </u>	<del>  W</del>	V	·	14.11	V				2	4	49		ne goined, no	د
2-3	1				•			i			Н	`	Fires, day		
-	1	<del> </del>				<del>                                     </del>	-	l	<del> </del>	3	Н			· · · · · · · · · · · · · · · · · · ·	
3-1											Н				
-	<del> </del>				<del> </del>	<del> </del>			-	4	Н			· · · · · · · · · · · · · · · · · · ·	
4.5							1			_	Н				
<b>-</b>	-		_		-	<u> </u> 				5	H			<u> </u>	
5%	11	MA	T	12	Dis	Most	NO	_	NO		$\mathbb{H}$	sp	Soud yellowish orong	e, tire grain	<u>~~</u>
-	<del>+</del>	+-	<del>                                     </del>	<del> </del>		1	-	<del> </del>	1.52	6	X	7	little Year Fines, day		
6-7	15		ベン	12	02	100	NO	_	פא		$\mathbb{H}$				
<del></del>	₩.	<del>  ¥</del>	\ <u>\</u>	<u> </u>	1,0	N.	<u> </u>	<u> </u>	ļ	7	$\mathbb{H}$				
7-8											Н				
-	+		ļ			-	<u> </u>	<del> </del>	<del> </del>	8	H				
8-9								ļ			H				
-	+	-		-	-	-	-	ļ	+	9	H				
9,10	' [										Ц				
	1	1	1	1	1	1	1	1	1	1	. 1		1		

...

		(0)	z	Ġ.	URE		TER	(ED	ECT		<u>-</u>	PROJECT: CTO 00 27 NO. 7540 BORING NO. 5810
рертн	TYPE	BLOWS	DRIVEN	REC'VD'	MOISTURE	ODOR	UNFILTER	FILTERED	CORRECT	ОЕРТН	uscs cope	
10-11	7	NA	<b>(</b>	12	Solvat	Line	MA	NA	Ns	1 M		Sand light grow very fire ground little
11-12			424	12						2 🗸		
12.13	·/\ 55		<b>←</b> ×	p	Silvita					3 ₹		
13-14	1,		1	N					V	4	£∙o.R	Sond, dark brown, with black
							-			5		Some non plastic Fines, Soherated
					-					6		Jame man plastic find
-										7		
		-								8		
-										9		
										0		
		_		_						1		
					-					2		
									_	3		
									_	4		
			<u> </u>							5		
										6		
										7		
										9		
			L	<u></u>				<u> </u>		]	1	

SOIL//SEDIMENT DESCRIPTION, GRAIN SIZE, COLOR, ANGULARITY, DENSITY/CONSISTANCY

				·								SHEET / OF 2
			<u> </u>	<u></u>		·					<del>-</del>	PROJECT: BORING NO.: 5811
												(TO 00 27) TOTAL DEPTH: 12 /
												JOB NO.: 75 YO LOGGED BY:
												PROJ. MGR: Paul Colliges EDITED BY:
		_		. (	2		/	/	,	_		ORILLING CONTRACTOR: TEG
		5	ee		ori	y	po	wh	マヘ	Fizur	P	ORILL RIG TYPE: Strata pro be
		0				0						ORILLERS NAME: Jason Angolin
												SAMPLING METHODS: SO 1 Spoon
												DRILLING TECHNIQUE: Occept Park
				•								HAMMER WT: NA DROP:
												STARTED TIME: 7:25 DATE: 3/20/97
												COMPLETED TIME: 8:10 DATE: 3/20/97
		· · · · ·	1				ī					BORING DEPTH (ft.) 12' BOREHOLE DIA.: 24
												CASING DEPTH (it.)
					ļ		_		æ			WATER DEPTH (ft.) & 8'
				<u></u>	1	- 1	РРМ	ŝ	РРМ		DE	TIME:
_	l ]		7	ÆR			<u> </u>	(PP)	NA		00 V	DATE:
SAMPLE DEPTH	SAMPLER TYPE	خ	INCI-LES DRIVEN	INCI-IES RECOVERED			UNFILTERED OVA (PPM)	FILTERED OVA (PPM)	CORRECTED OVA (PPM)	DEPTH IN FEET	OR ASTM CODE	BACKFILLED TIME: 8:10 DATE: 3/20/97 BY: TEG
E DE	ER 1	11.9/9	S DR	s RE	JRE		ERE	ED (	CI	2	28	TOP OF CASING ELEV.: DATUM:
MPL	MPL	BLOWS/6-IIN.	꽃	:HE	MOISTURE	ODOR	FE	TER	RR.	РТН	uscs (	AMOUNT OF FREE PROCUCT :
SAI	SA	蔨	ž	ž	ĭ¥	0	ž	표	8	<u></u>	S	RISE/FALL OF WATER TABLE : TIME INTERVAL :
	$ \Lambda $											LITHOLOGIC DESCRIPTION :
ا-ه		NA	y	Ş	~w	Na _t s	40	_	NO	Ŭ	]	
	55	1	7		11.0	Na	/00		100	1 <u>1</u> <u> </u>	39	Sound, light groy, Fine grained, no
1-2	۱,	$\mathbb{N}$	12	\ν			}			I M	1	Fires dry
1	1	W	1	\'-	14	ν°	ND	-	ND	2		0
2-3										_		
U		<u> </u>	ļ				ļ		ļ	3	-	
3.4	j						1			-		
7	<u> </u>	<u> </u>	<u> </u>	<u> </u>				<u> </u>	ļ	4		
4-5	İ		ļ		İ.					-	-	
<u> </u>		-		<u> </u>	<u> </u>	<u> </u>			-	5	4	
4,5	1	MA	1	12	02	Prop	100		_	N	1,0	Sond, yellowish Gronge Fine graines,
<b></b>	55	+-	<del>   </del>	* -	1	1,4,2,	100	<del>-</del>	20	<b>-</b> 6 ∤	158	no tinde, day
6-7	1		674	12	0	MAN	ND		100	_ }		
<u> </u>	<del>  \</del>	1	+ 4	+	1 7 0	<del> </del> -	1,00	-	100	┨ [╸] 7 4	4	
78										8	1	
8-9										1 1		
0	<u> </u>	<del> </del>	-	-		<u> </u>	1	<u> </u>	-	_  e [		
		1	1	1	ĺ	1		1			1	

١,.

рертн	туре	BLOWS	DRIVEN	REC'VD'	MOISTURE	ODOR	UNFILTER	FILTERED	CORRECT	ОЕРТН	USCS CODE	PROJECT 270 0027 NO.7570 BORING NO.5811
w	<u>ተ</u> ፈչ	NA		12	سلسلي	مسر	NA	Me	NΑ	1		Sond, light groy, very fine to fin grammed  1: He Fines (nonplestie) substant
11-12	V	NA	24	N	المماري	مسم	NA	NA	Na	2	£.0.8.	Send dat brown with block bonds, un fine to fine grained softward
								<u>-</u>		3	,	to that geniand Saturated
										4		
					-					5		
								_		6		
										8 .		
										9		
										0		
										1		
										2		
										3		
										4		
-				-						5		
-										6		
						-				7		
										8		

				····				_					<del></del>	<del></del>	
													_	<b>-</b>	
												SHEET		OF	
							-					PROJECT:		BORING NO .: SB	~~
												CTO 0027		TOTAL DEPTH:	
											ļ	JOB NO.: 7540		LOGGED BY: 6. 6	oode
											}	PROJ. MGR: Paul Calli	100	EDITED BY:	
	,												TEC	· · · · · · · · · · · · · · · · · · ·	
1	/	_	0		1	1	,	7		_		ORILL RIG TYPE: 1.	Augar		
	) C	C	501	· ry	, ho	car	うせっ	<i>[-</i> ;	g u r	P		DRILLERS NAME: 3650	Ang.	Via	
				(									ab _		
												•	·ad Ausa	1	<del></del> -
				,								HAMMER WT: NA		DROP: -	
												STARTED TIME: 8:40			57
												COMPLETED TIME: 8:55	T	1	97
·			1	<del></del> -	ī		T		1			BORING DEPTH (R.)	121	BOREHOLE DIA,:	3 "
								Ì	ļ			CASING DEPTH (fL)	NA		-
		1				İ	₹		ŝ	i		WATER DEPTH (R.)	681		<del></del>
			. [	E C			(PP)	, Μ	P.		ODE	TIME: DATE:		*	
=	m.		z	VEF		Ì	N N	A (P	8	-	Ū X	BACKFILLED TIME: 8:55	DATE: 3/	120/97 BY	
EP	TYF	Z	NS IV	ECC	ш	Ì	ED	O O	ED	FEE	OR ASTM CODE	TOP OF CASING ELEV.:	- UATE. 37	DATUM:	TES
1,60	LER	VS/6	ESC	ES F	JT	ا ہے	TEF	REC	3EC	Z Z	og o	AMOUNT OF FREE PROCUCT		- IBATOM.	<del></del>
SAMPLE DEPTH	SAMPLER TYPE	BLOWS/6-IN	INCHES DRIVEN	INCHES RECOVERED	MOISTURE	ODOR	UNFILTERED OVA (PPM)	FILTERED OVA (PPM)	CORRECTED OVA (PPM)	DEPTH IN FEET	uscs	RISE/FALL OF WATER TABLE		- TIME INTERVAL :	
\$			=	=	-	-				3		LITHOLOGIC DESCRIPTION :		THE ISTERVANE.	
										0				· · · · · · - · - · -	
0-1													··. ··		
-		<u> </u>								' -		Open Tranch		_ <del></del>	
1-2										2		Che Marca		<del></del>	
											<				
2.3										3	)				
		-						_							
3-4				ļ						4	1				
4-5										-		<del></del>			
<u> </u>										5					
5-6	HA	NA	NA	NA	02	here	NO	-	ND	$\mathbb{H}$	0	Sand, light gray	a very 3	ine to Fre	
<u> </u>		T	1	1	1-0	- 4			100	- 6 <del>  /</del>	<b>}</b> 5 <b>(</b>	grained, 10	tines	dy	
6-7					00	Marc	an	_	NO	,	4				
		++	$\dagger \dagger$	$\dagger \dagger$	+			<del>                                     </del>	<del>                                     </del>	1 1		and (as a bo	u. a. \		
78					Asisk.	. 4	NO	-	طير	alX	1	240 (.4) 600	<del></del>		
0.0	$\top$		$\sqcap$		<b>1</b>	17:44	,,,	./4		1 1	4				
8-9					Labor .	1/1	/V#	NA	NA	9	1				
9-10		$\prod$		$\prod$	1	(,			$\prod$	1					
			1	4		8,8		1	1	10	7				

	<u> </u>								
			-						
	φ				-	-	-	_	
	<u>~</u>	-	-			+	-	_	
	Ľ	-	-		-	+	$\perp$	_	
	Γ								
		-	-			-	-	_	
								•	
	Ľ	+	-			+	-	_ _	
	Ι								
	Ť	+	-			+	+	-	
	I								
	1	1	-			-	-	_	
	<u>.</u>								
							_		
	2		-			+	-	-	
	Ī	-	+		1	+	+	- -	
	I								
				_					
	°	-	-			-	-	-	
	L								
	1								
	ĭ	+				- -	+	_ -	
	Ī								
			-			-	_	_	
	œ								
			<del></del> -						
	Ľ	-	-			-	_	_	
	L								
	Ĭ.	+	-			+	+	- -	_
	1								
	Ť	+	+			+	-	_	
	,								
		-							
	_								
	<u>.</u>							_	
		_							
2	~ 	<u></u>			5.	~	4	1	الر
		_			de,				-5
		+ NA	NA NA		.4	> - \$	- X	4	٥,
5		-+			9				
ا LITHOLOGIC DESCRIPTION :	DEP1	COR	UNFI	000	MOIS	REC	BLOV	TYPE	DEP
PROJECT: C/V VOJ/ NO./S YO BORING NO. / C									ТН
CTO 0000				_	RE				
OF 2									
J									
									7

.

.

												SHEET		OF	
	<del></del>	<del></del>					_					PROJECT:		BORING NO : SB 1	3
												c70 0027			2 /
												108 NO.: 7540		LOGGED BY: 6. 6	0000
												PROJ. MGR: Paul (elle		EDITED BY:	
													TE 6		
	1	О		1		1	_					DRILL RIG TYPE: Hand	And		
	)e-	e	منته	$\gamma$ h	066	۰۵،۵۰	r	'qur	L			DRILLERS NAME: Jaso	1 Ans.	lia	
				U								SAMPLING METHOOS: /	end Arre	1 (6rah)	
												ORILLING TECHNIQUE:	tond Aug	1	
												HAMMER WT: VA	<u>-                                      </u>	DROP: _	
												STARTED TIME: 9:00		DATE: 3/20/97	
												COMPLETED TIME: 7:20	· · · · · · · · · · · · · · · · · · ·	DATE: 3/20/9	<del></del>
						<del></del>						BORING DEPTH (ft.)	12'	BOREHOLE DIA.:	3 ''
							Ì			.]		CASING DEPTH (%)	WA		
			į									WATER DEPTH (ft.)	<u>es'</u>		
ļ				a			ρМ	•	μď	i	Ή	TIME:	1		
			_	ERE			/A (F	РР	4		Ö	DATE:	<u> </u>		
E	γРΕ	_	VEN	cov			00	٧. ٧	Ó	EET	ASTM CODE	BACKFILLED TIME:9:20	DATE: 3/	20/97 BY	Y: TEG
30 :	R.T	N-9/	DR	RE	ЯE		ERE	EDC	CTE	<u>z</u>	OR A	TOP OF CASING ELEV.:		DATUM: -	
SAMPLE DEPTH	SAMPLER TYPE	BLOWS/6-IN.	INCIHES DRIVEN	INCHES RECOVERED	MOISTURE	ODOR	UNFIL TERED OVA (PPM)	FILTERED OVA (PPM)	CORRECTED OVA (PPM)	DEPTH IN FEET	uscs c	AMOUNT OF FREE PROCUCT	: -		
SA	3	BEC	2	2	Ω V	ao	3	FIL	00	DE	ns	RISE/FALL OF WATER TABLE	<u>:                                    </u>	TIME INTERVAL:	
												LITHOLOGIC DESCRIPTION :			
الم	]ŧA	NΑ	NK	MA	02	44.49	μO			M	•	Sond light group	Ven	time to Fine	<u> </u>
Ľ	<u> </u>				4 ,	4	ت م		N0	1	8	grained no	Finac	dry	
. 1.		NA	NA	NA	N ==	في				$\mathbb{N}$		,	·	J.	
10	14/4	1/***	,		02	1/2	10		WD	2					
2-3							A/A	νA	NA	-					
<u> </u>							T		1	3					
3-4										4					
4.5	1									5					
56	HA	NA	MA	NA	QM	NON	ND	,	ND	e <b>X</b>	150	Sond light a	e non	of his fines	Fine
6-7					M		MD	-	NO	7		J			<i></i>
7-8					poix		NO	-	NO	V a X		Moist at	8 1		
- 2	HA	NA	NA	MA	1	Nare	NA	4/0	4.4			7 (01)			
8-9		11-	-	""	17		1	NA	NA	9	_				
g N	1	14		1	7				1	10					

SHEET Z OF_ ~ SB 13 BORING NO. PROJECT: CTO COAT MOIS TURE NO.7540 FILTERED UNFILTER CORRECT REC'VD' DRIVEN BLOWS ОЕРТН DEPTH ODOR 110-4 NA NA NA HA NA NA WA 9

																-		
														Si	HEET_		OF 2	
													<del>-</del>	-			<del>                                     </del>	·
														PROJECT: CTO 002	7		BORING NO .: SBI	<del></del>
1													1	JOB NO.: 7540	<u>,                                     </u>		LOGGED BY: C. G	12/
l									•				г		ثماان	<del> </del>	EDITED BY:	oode
													1	DRILLING CONTRACTOR		EG	100.100 01.	
١		,	/		1		/	/	1	-			ſ			Augus		
ļ		4	) P-E		Sori	M	foc	-bo.		- 13 u (1			1			Ange	(: 4	
1						0								SAMPLING METHODS:		cab		
														DRILLING TECHNIQUE :	H=-		<b>(</b>	
														HAMMER WT:	NA		DROP:	
														STARTED TIME: 9:	20		DATE: 3/20/97	2
													}	COMPLETED TIME: 9	: Y 5		DATE: 3/20/5	
į				, ,		1	1					1	-	BORING DEPTH (fL)		12'	BOREHOLE DIA.:	3"
												-	- 1	CASING DEPTH (R.)		NA		<u> </u>
								_			i		- }	WATER DEPTH (R.)		e8'	<u> </u>	ļ
					a			Mdc	₹	РРМ		ع ا	별	TIME:				ļ
	_			-	ERE			\ <u>\</u>	(PP)	5   		300	3	DATE:			<u> </u>	<u> </u>
	PTI	Э.Д.	_	VE	ço			00	Š	o a	EET	67.4	2	BACKFILLED TIME: • 9	45	DATE:	3/20/97 BY	: 7£6
ı	E DE	ER 1	⊪9/9	SDR	S RE	J. S.		ERE	Ë	CTE	₹.	MI SA GO	2	TOP OF CASING ELEV.:			DATUM:	
	SAMPLE DEPTI	SAMPLER TYPE	BLOWS/6-IIN.	INCHES DRIVEN	INCHES RECOVERED	MOISTURE	DOOR	UNFILTERED OVA (PPM)	FILTERED OVA (PPM)	CORRECTED OVA (PPM)	DEPTH IN FEET			AMOUNT OF FREE PROC	CUCT :			<del></del>
	SA	SA	ਭ	ž	<u> </u>	Į ž	18	3	냰	8	픕	1 2	3	RISE/FALL OF WATER TA	ABLE :		TIME INTERVAL:	
						1					۰			LITHOLOGIC DESCRIPTI				
	0-1	144	NA	√A	NA	M	Neg	WD	_	ND		Д		Sond light bro	<u>~_, </u>	verz Fi	ne do Jine	
			<del>                                     </del>	<u> </u>	<u> </u>	Ai	11-	<u> </u>			1	44	9	grained, 1	· F:	us, du	7	
	1-2	IŁA	NA	NA	NΑ	02	Jore	20	_	NO		$\mathbb{H}^{2}$	`	6	<del></del>		<del>9.</del>	
	-		1	$\vdash$		1					-	<i> </i>		1 4. 1			e, very fine	
	2-3							NA	N4	MA	3	$\dashv$		fine grained	10.	me no	nplute Fines	<del></del>
							11	TT		1	1 1	$\dashv$		3 7				
	3-4	11									4	7						
		П									1 [							
	4-5	1	1	1	4		1		0	1	5							
	ماري	I) A						,				$\bigvee$		Sond, light	L bro	<u>سم ل</u>	eng time to	
	,,	HA	MΑ	NA	NA	IM	Non	~0	<u> </u>	NO	6	X)	R	Fine graine	طب	no Fine	s, dag	
	6-7					M	None	~0	_	~0		X	Λ		·. · · ·	<del></del> .		
		++-	+	H	†	1.1	<del>"</del> -		-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		$\langle \cdot \rangle$						
	7-8	1		1	V	May	None	W0	-	٥٠٨	8	$\overline{\mathbf{A}}$		Moist.	·			
	8-9	IIV	MA	A IA	NA	لممل	المير الم	110	.,,	1/2								
	0	1.77	1-14	1///	1,517	76'	ha	NA	NA	WA	9	Ц						
	9-10		,		,	11.						Н					· · · · · · · · · · · · · · · · · · ·	
		774	X_	$\perp \!\!\! \perp \!\!\! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$			$\bot \checkmark$	IV.	7*		10			1				

.

٠..

PROJECT: BORING NO .: 5815 CTO 0027 LOGGED BY: 6. EDITED BY: See Boily bocobion Figure ORILLERS NAME: SAMPLING METHOOS: HAMMER WT: DROP: 16:00 STARTED TIME: DATE: 3/20/57 16:45 COMPLETED TIME: BORING DEPTH (fL) CASING DEPTH (fL) 281 WATER DEPTH (ft.) CORRECTED OVA (PPM) UNFIL TERED OVA (PPM) TIME: INCIHES RECOVERED FILTERED OVA (PPM) INCHES DRIVEN SAMPLE DEPTI-I SAMPLER TYPE 16:45 DATE: 3/ 20/57 BACKFILLED TIME: BY: 786 BLOWS/6-IM. DATUM: TOP OF CASING ELEV.: AMOUNT OF FREE PROCUCT: LITHOLOGIC DESCRIPTION : NA ND 12 12 NΟ ND ND MP SV ND 12 12 ND ND

	-			-						
	<u>-</u>							_		
	<u>_</u>			+	-	1			-	7
			$\dagger$	+	-	_		1	$\dagger$	T
	工									
	Ľ		1	$\vdash$	-	L		+	+-	T
	6			-	_	_			$\vdash$	Ţ-
	<u>``</u>								-	
				-	_					
					_			-	-	
	<u>.</u>									
							_			
	2		-	-	_	_			-	Γ
	Ē			-	-				-	Τ
	Γ_									
	r		†	+	_			$\dagger$	1	T
	Ι									
	I									
			1	1	_				1	$\neg$
	<u>.</u>									
				-					_	
				-				_	_	
								·		
	<u>o,</u>									
	U)				_					
	I									
	_1			-	_					
										~~
				1						$\neg$
	T		<del>-,</del>							
	- Cas.	K	4	-	-			-	- 1	T
			<del></del>		70	-5			<del>~</del>	7,74
	Ē	$\overline{\mathbb{I}}$	+		1	$\downarrow$	۶.	+		T
5nd as about, Sakishal	≰	ş	7	₹ }·	40	<del>ئە</del>		È	ڐؚڒ	<del>ر</del>
LITHOLOGIC DESCRIPTION :		col	FIL	┼-	MO OD	RE	OR	BLO	TYI	DE
	S OR	RRE	TERI	FILT	OISTU	C'V'	IVEN	ows	PE	PTH
B PROJECT: 170 0027 NO.7445 BOBING S&IS		ст	ED	ER	JRE	D,	4	 S		
OF 2										
										$\neg$
								į		

SHEET OF Z Pc4 - 300 -PROJECT: CTO 0027 TOTAL DEPTH: /5.5' JOB NO .: 7540 LOGGED BY: G. G. PROJ. MGR: Paul Cellica See Boing Location Figure DRILLERS NAME: William Lindsey (Blind Dilled TO COMPLETION SAMPLING METHOOS: DRILLING TECHNIQUE 114100 Stem Augus 114" 50 OROP -HAMMER WT: DATE: 4/22/57 STARTED TIME: 9:30 --COMPLETED TIME: 15.5 BOREHOLE DIAL BORING DEPTH (fL) CASING DEPTH (fL) NA WATER DEPTH (A) JINFIL TERED OVA (PPM) CORRECTED OVA (PPM) TIME: FILTERED OVA (PPM) INCIHES RECOVERED DATE: NCHES DRIVEN SAMPLE DEPTH SAMPLER TYPE DEPTITIN FEET BACKFILLED TIME: DATE: BY: BLOWS/6-IN. MOISTURE TOP OF CASING ELEV.: DATUM: AMOUNT OF FREE PROCUCT : RISE/FALL OF WATER TABLE : TIME INTERVAL: LITHOLOGIC DESCRIPTION : HA NA NA WA HA 2.2 14 Due to the clock frozinily, to boing SBOY the boing was blind dilled to 144 NOTE: Diesel like ada evident in soils ut 5 to 7' 6/5.

		}	}	}						
	Ţ	-	+	-	4				7	$\neg$
		-	$\dashv$		-	_				
	<u></u>									
			$\dashv$		_	_			_	
	7									
	6		-	-	_	_			$\vdash$	T
									•	
	ľ		-	-	-	_		1	T	T
	L									
	1		╀	$\vdash$	-	1			T	T
	Γ									
	ĭ	1	+	+	-	-		1	+	T
	I									
	Ī	1	+	+	+	1			7	
	<u>.</u>	_								
	Ī	1	$\dashv$	+	-	4			7	
	Ī									
					:					
				•				_		
	<u>。</u>		-	-	_	L			-	
	L									
	ľ		+	+	-	-			1	T
	Ι									
			$\dagger$	+	+	1				T
	Ĩ		+	- -	-	-			1	T
	ı,		+	$\dashv$	+	-			1	T
	<u>,</u>							•	•	
28		4	4			4	4	<	7	4
	<u>)</u>				_					
	工						<u> </u>			BI
		1	1			1			7	in
					_					1
	Ţ	$\pm$	+	1	1		-		+	2/
	; 							_		Led
	ĭ	1	+	$\pm$			+	-	+	1
	T		_		- 4	٠ ﴿				-
	Ī	土	十	+	1	1	-	-	7	T
	I	1	1	<u>.</u>	<u> </u>	*	*	X	3	
LITHOLOGIC DESCRIPTION :	usc	coı	+	-	OD			BLC	TYF	DE
	PTH S OR	RRE	TER	FILT	TZIC	C.A.(	IIVEN	ows	PE	РТН
BE PROJECT: CTO OO 27 NO.7540 BORING NO.		ст		ER	JRE					
			1	1	}	-				
SHEET Z										
				- {						
, ,								l		

												SHEET		OF 2	
									<del></del>					PC4-300	
												PROJECT:		BORING NO .: MW	
												CTO 0027		TOTAL DEPTH: /	
												JOB NO .: 7540		LOGGED BY: 6. C	oode
												PROJ. MGR: Paul Celli		EDITED BY:	
		,		1		1	1	,				<del></del>	~(3) A+/.	-he Dailling	
	•	516	?	15.,	:7	h = c	. h'-	- /	<u>-</u> ;;	ب		ORILL RIG TYPE: RAM	10 (Re	ep Rock)	
	_				/							DRILLERS NAME: Willia.	- Lindse	. —	
												SAMPLING METHODS: BA	ind Dill	ed To Camples	for
												ORILLING TECHNIQUE : 46/	law Stone	Anges 4 4/4" 2	
												HAMMER WT: NA		OROP: -	
												STARTED TIME:		DATE: 4//22/5	7
												COMPLETED TIME:		DATE:	
												BORING DEPTH (fL)	15.51	SCREHOLE DIA.:	8"
												CASING DEPTH (ft.)	NA		
												WATER DEPTH (R.)	_		
							Σ	_	PM)		ш	TIME:			
				REC			<u>a</u>	PM)	A (P		CODE	DATE:			
Ξ	포		Ž.	OVE			ò	¥ (£	6	E	ASTM (	BACKFILLED TIME:	DATE:	37	<del></del>
SAMPLE DEPTH	SAMPLER TYPE	<u>₹</u>	INCHES DRIVEN	INCHES RECOVERED	æ		UNFILTERED OVA (PPM)	FILTERED OVA (PPM)	CORRECTED OVA (PPM)	DEPTHIN FEET	3 AS	TOP OF CASING ELEV.:		DATUM:	<del></del>
7.E	PLEI	BLOWS/6-IN	ES I	ES	MOISTURE	ď	LTE	ERE	REC	=	SOR	AMOUNT OF FREE PROCUCT		····	
YW.	AMI	NO N	Ş	Š	ğ	ODOR	INF.	# T	SO.	EP.	uscs	RISE/FALL OF WATER TABLE		TIME INTERVAL :	
,	3,					-		_=_				LITHOLOGIC DESCRIPTION :	·		<del></del>
Hn							[					0 to 8" Concrete			
	_	VA	٨٨	N/A	-	Nº AL	1			H, 1		8" 10/ Shell a	1 4.	grained Sal	,
		1	<del> </del>	1		П				'H		(7:11)	مدسو	910.20 3-6	
HA	`			1 /	-	}				2		\ <del>+</del> ''(.)			
												Sood, light goog,	Fine of	le media aveix	eO,
Нл	6ab				8-8		ND.	_	NO	] z		ven chas, da	·		
			T			T						7			
IłA			$\prod$	11			<u> </u>		-						
4A	and				Q4		No	_	NP	l Ki			<del>q.</del>	, ,	
_		++	++-	+	+	++	+	-	+-	5 Å		12-d 1.764 5007,	Time de	Media- grain	
HA	-									] 6		u-7			
HA	604				Le si		MO		NO			5nd, 11 about	Moist	at 1 611	
KA		++	+-	+1-	r		-	<del> </del>	-	7 X				· · · · · · · · · · · · · · · · · · ·	
					,		NA	NA	NA	8		Borhol . blind	dille	to Congletio	due
1	11	TT			1	$\top \uparrow$	11	17	11	1 1		to close and	int to	5814	
11.1					1				$\parallel \parallel$	9			/		
81:30	$\prod$	11		$\top \top$	1/2	TT	11		1	1 1		Fine animal	Sund do	15.5'6/5.	
8	1			1	13	1			$\downarrow \downarrow$	10					

٠.

٠,

													SHEET Z OF
ОЕРТН	ТҮРЕ	BLOWS	DRIVEN	REC'VD'	MOISTURE	ODOR	UNFILTER	FILTERED	CORRECT	ОЕРТН		USCS OR AS IM CODE	PROJECT: CTO 0027 NO.7540 BORING NO. Mac 2
1	NA	NΑ	NΛ			horr	N.		₩.	11			
+								1	Ī		Ш		
4										/2			
1.11					3					/3	L		
			-		77.78					14	_		14'611.
+ 81.1	-		-		1	-			-	) 5			E.O.B
4	4	1	*	14	4	1	1	1	18	6			£.0.b
_				<u> </u>		-		-	-	7	-		
	-		_	-								1	
				-	-	<u> </u>	-		-		Ļ		
												4	
	-						1		+-	'	<u>'</u>	1	
											-		
											2		
											3	1	
											4	-	·
											5		
											5		
											7	-	
											8	7	
											9	7	

												SHEET		of	
					··									P14-300	
												PROJECT:		BCRING NO .: Mu	
														TOTAL DEPTH: /5	
												PROJ. MGR: Pul (alling	· · · · · · · · · · · · · · · · · · ·	LOGGED BY: 6.6	soo dre
		,		_										EDITED BY:	
	4	/ 	, /	2.,	, 1			C:	· ( 4 67					PROLE)	
	/	12 =	1	7	7 -	• ( • )	,	'	/	•		1	, ,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<del></del>
												SAMPLING METHODS: / Blig	1 4	sey	7
												DRILLING TECHNIQUE: 121/		To Conflets	" FO
												HAMMER WT: NA	<u> </u>	DROP: -	10
												STARTED TIME: /2:15	-	DATE: 4/22/9	7
												COMPLETED TIME:		DATE:	<del></del>
												BORING DEPTH (ft.)	15.5'	BOREHOLE DIA.:	8"
												CASING DEPTH (R.)	NA		
												WATER DEPTH (R.)			
.				_			Σ		Σ		ш	TIME:	_		
				RED			A (P.	P.W.	a d		CODE	DATE:	_		<del>                                     </del>
Ξ	PE		Ē.	OVE.			8	*	8	ET.	IM (	BACKFILLED TIME:	DATE:	3	<del></del>
DEP	7 T Y	Ĭ	8   €	REC	₹.		RED	Ó	TEC	7 F.	OR AS IM	TOP OF CASING ELEV.:		DATUM:	
SAMPLE DEPTI	SAMPLER TYPE	BLOWS/6-IIV.	NCHES DRIVEN	NCHES RECOVERED	MOISTURE	R.	UNFILTERED OVA (PPM)	FILTERED OVA (PPM)	CORRECTED OVA (PPM)	DEPTH IN FEET	s of	AMOUNT OF FREE PROCUCT	:		
SAM	S.A.M.	BLO B	Š	Z Z	MOK	ODOR	U.S.	FILT	Son	DEP	USCS	RISE/FALL OF WATER TABLE :		TIME INTERVAL :	
										1. 1		LITHOLOGIC DESCRIPTION :			
HA	NA			NA		عمصه				l° 🛛					
#a	1	VA	1	10/6		W ³		_	-	Įιβ					
1				T				1	II						
14/1				11	104					2 1	}				
			П				П			] [ <u>Y</u>					
AA										∑] _€		Due to close	Proxin	14 to #8500	
	П	П	П				$\prod$			Y		The boiling was	blind	dilled to	
Hs										] 4[ <u>Y</u>		Comple hion			
					ł					] [1	]			_	
								Ш		5		Age ( thin	es in	icate fin	<u> </u>
					1.1							grained sand of	0 15'61.	<i>5</i>	
	1	11_	11	$\coprod$	must		11			6		/			
											1				
جـا	1	#-	4	<del>                                     </del>	<del> </del>	<u> </u>		11		<b>│</b>	1				
D.					لما	1					1		<del>-</del>	····	
	₩.	#	$\frac{1}{1}$	++	54	+	Џ.	$\bot \bot$	##-	J a∐	4				
Blind											4			<del></del>	
100	+	#-	<del>                                     </del>	++	-	#	++	┼-┼		.↓ •  <u>↓</u>				<del></del>	
				11							4			<del></del>	
L	14	7	1/4	1		14	1	1	$\Psi \perp$	10	1	1			

•

NO.75YO BORING NO. Awa?
-------------------------

PROJECT: BORING NO .: MuoV CTO 0027 TOTAL DEPTH: /5,5/ See Boing howhin Figure JOB NO .: 2540 LOGGED BY: C. Co. DRILLERS NAME: (مرززانه SAMPLING METHOOS: DRILLING TECHNIQUE: Hollan Sha DROP: DATE: 4/72/97 STARTED TIME: /4:30 DATE: COMPLETED TIME: 15.51 BORING DEPTH (ft.) BOREHOLE DIA.: CASING DEPTH (R.) WATER DEPTH (R.) JNFILTERED OVA (PPM) CORRECTED OVA (PPM) TIME: JSCS OR ASTM CODE NCHES RECOVERED FIL TERED OVA (PPM) DATE: INCINES ORIVEN SAMPLE DEPTH SAMPLER TYPE DEPTH IN FEET BACKFILLED TIME: DATE: 37: DATUM: TOP OF CASING ELEV.: AMOUNT OF FREE PROCUCT : RISE/FALL OF WATER TABLE : TIME INTERVAL: LITHOLOGIC DESCRIPTION : NA WA NA 11/ IFA 14 Due to Close frakingh to



#### **APPENDIX F**

# HEADSPACE METHODOLOGY FOR DETERMINING SOIL ORGANIC VAPOR CONCENTRATIONS

## HEADSPACE METHODOLOGY FOR DETERMINING SOIL ORGANIC VAPOR CONCENTRATION

Soil headspace readings where obtained utilizing the following method which conforms to the requirements of Rule 62-770.200(2), FAC.

Two 16 ounce glass soil jars were half-filled with soil sample (duplicate samples). The soil jars were then sealed utilizing "mason jar" type open top screw on caps with foil in place of the conventional solid jar tops. The soil samples were allowed to equilibrate to ambient temperature which was within the FDEP temperature range.

The samples were tested with a Foxboro Century 128, an organic vapor analyzer (OVA) equipped with a flame ionization detector (FID). Prior to each days activities, the OVA was field calibrated with 100 ppm methane in air, in accordance with the manufacturers specifications. Sample testing was performed by inserting the OVA probe through the foil sample cover and recording the highest OVA reading. Following collection of this OVA reading, the OVA was fitted with a granular activated carbon filter probe. The OVA was then used to test the headspace above the duplicate sample. Carbon absorbs petroleum hydrocarbons and thus the filtered reading is assumed to represent naturally occurring organic vapors.

Upon completion of the screening exercise, the carbon filtered result was subtracted from the unfiltered result, to obtain a net petroleum vapor value. In accordance with Rule 17(62)-770.200(2), FAC, and Guidelines for Assessment and Remediation of Petroleum Contaminated Soil (May 1994) corrected headspace levels in excess of 50 ppm is defined as excessively contaminated soil for diesel contaminated soil. Corrected headspace levels in excess of 10 ppm but less than 50 ppm are considered as contaminated, though not excessively contaminated.

#### **APPENDIX G**

### PRE-BURN SOIL LABORATORY DATA SHEETS



Technical Report for

Brown & Root Environmental

Site G300 CTO 0027

7540

Accutest Job Number: F580

Report to:

C/O Paul Calligan

Brown & Root Environmental

1311 Executive Center Dr. Ste: 220

Tallahassee, FL 32301

ATTN: Arnold Lamb - QA Officer

Total number of pages in report: 10

MAY 1 3 1997

Harry Benzadi, Ph.D. Laboratory Director

Results relate only to the items tested.

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories.



## Sample Summary

Brown & Root Environmental

Date:

05/09/97

Job No:

F580

Site G300 CTO 0027 Project No: 7540

Sample Number	Collected	Time By	Received	Matri Code		Client Sample ID
E580-1	04/23/97	13·00 GG	04/25/97	SO	Soil	PREABURN SOIL



## Report of Analysis

Page 1 of 1

Client Sample ID: PREABURN SOIL

Lab Sample ID:

F580-1

Matrix:

SO - Soil

Method: Project:

**EPA 8100** 

Site G300 CTO 0027

Date Sampled: 04/23/97

Date Received: 04/25/97

Percent Solids: 92.2

Run #1

File ID I01472.D DF 1

Analyzed 04/28/97

Ву NF

Prep Date 04/28/97

Prep Batch **OP85** 

**Analytical Batch** 

GIJ69

Run #2

#### **BN PAH List**

CAS No.	Compound	Result	RDL	Units Q
83-32-9	Acenaphthene	ND	360	ug/kg
208-96-8	Acenaphthylene	ND	360	ug/kg
120-12-7	Anthracene	ND	360	ug/kg
56-55-3	Benzo(a)anthracene	ND	360	ug/kg
50-32-8	Benzo(a)pyrene	ND	360	ug/kg
205-99-2	Benzo(b)fluoranthene	ND	360	ug/kg
191-24-2	Benzo(g,h,i)perylene	ND	360	ug/kg
207-08-9	Benzo(k)fluoranthene	ND	360	ug/kg
218-01-9	Chrysene	ND	360	ug/kg
53-70-3	Dibenzo(a,h)anthracene	ND	360	ug/kg
206-44-0	Fluoranthene	ND	360	ug/kg
86-73-7	Fluorene	ND	360	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene	ND	360	ug/kg
91-20-3	Naphthalene	ND	360	ug/kg
90-12-0	1-Methylnaphthalene	ND	. 360	ug/kg
91-57-6	2-Methylnaphthalene	ND	360	ug/kg
85-01-8	Phenanthrene	ND	360	ug/kg
129-00-0	Pyrene	ND	360	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
321-60-8	2-Fluorobiphenyl	82%		35-120%
84-15-1	o-Terphenyl	76%		35-120%

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank

N = Indicates presumptive evidence of a compound



#### Report of Analysis

Page 1 of 1

Client Sample ID: PREABURN SOIL

Lab Sample ID:

F580-1

Matrix:

SO - Soil

Method: Project:

FLORIDA-PRO Site G300 CTO 0027 Date Sampled: 04/23/97 Date Received: 04/25/97

Percent Solids: 92.2

Run #1

File ID I01581.D DF 2

Analyzed 05/02/97

By NF **Prep Date** 05/01/97

Prep Batch OP74

Analytical Batch

**GIJ73** 

Run #2

CAS No.

Compound

Result

RDL

Units O

TPH (C8-C40)

65.1

18

mg/kg

CAS No. Surrogate Recoveries Run#1

Run#2

Limits

84-15-1

o-Terphenyl

58%

40-140%

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank

N = Indicates presumptive evidence of a compound

#### Report of Analysis

Page 1 of 2

Client Sample ID: PREABURN SOIL

Lab Sample ID:

F580-1

Matrix:

SO - Soil

Method:

SW846 8010/8020

Project:

Site G300 CTO 0027

Date Sampled: 04/23/97 Date Received: 04/25/97

Percent Solids: 92.2

Run #1

File ID EF002068.D DF

Analyzed 04/30/97

AW

By

Prep Date n/a

Prep Batch

Analytical Batch

GEF53

Run #2

#### **VOA PPL List**

CAS No.	Compound	Result	RDL	Units Q
71-43-2	Benzene	ND	1.1	ug/kg
75-25-2	Bromoform	ND	1.1	ug/kg
75-27-4	Bromodichloromethane	ND	1.1	ug/kg
74-83-9	Bromomethane	ND	1.1	ug/kg
56-23-5	Carbon tetrachloride	ND	1.1	ug/kg
108-90-7	Chlorobenzene	ND	1.1	ug/kg
75-00-3	Chloroethane	ND	1.1	ug/kg
67-66-3	Chloroform	ND	1.1	ug/kg
74-87-3	Chloromethane	ND	1.1	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	1.1	ug/kg
124-48-1	Dibromochloromethane	ND	1.1	ug/kg
75-71-8	Dichlorodifluoromethane	ND	1.1	ug/kg
75-34-3	1,1-Dichloroethane	ND	1.1	ug/kg
107-06-2	1,2-Dichloroethane	ND	1.1	ug/kg
75-35-4	1,1-Dichloroethene	ND	1.1	ug/kg
156-60-5	trans-1,2-Dichloroethene	ND	1.1	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	1.1	ug/kg
78-87-5	1,2-Dichloropropane	ND	1.1	ug/kg
100-41-4	Ethylbenzene	ND	1.1	ug/kg
75-09-2	Methylene chloride	ND	5.5	ug/kg
1634-04-4	Methyl Tert Butyl Ether	ND	1.1	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.1	ug/kg
127-18-4	Tetrachloroethene	ND	1.1	ug/kg
108-88-3	Toluene	ND	1.1	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	1.1	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	1.1	ug/kg
79-01-6	Trichloroethene	ND	1.1	ug/kg
75-69-4	Trichlorofluoromethane	ND	1.1	ug/kg
75-01-4	Vinyl chloride	ND	1.1	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	1.1	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	1.1	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	1.1	ug/kg
1330-20-7	Xylenes (total)	ND	3.3	ug/kg
156-69-4	cis-1,2-Dichloroethene	ND	1.1	ug/kg
540-59-0	1,2-Dichloroethene (total)	ND	4.4	ug/kg

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank

N = Indicates presumptive evidence of a compound



Page 2 of ?

Client Sample ID: PREABURN SOIL

Lab Sample ID: Matrix:

F580-1

Project:

SO - Soil

Method:

SW846 8010/8020

Site G300 CTO 0027

Date Sampled: 04/23/97 Date Received: 04/25/97

Percent Solids: 92.2

Run #1

File ID EF002068.D DF 1

Analyzed 04/30/97

Ву AW Prep Date n/a

Prep Batch n/a

**Analytical Batch** 

GEF53

Run #2

**VOA PPL List** 

CAS No.

Surrogate Recoveries

Run#1

Run#2 Limits

460-00-4

4-Bromofluorobenzene

107%

50-150%

B = Indicates that analyte is found in associated method blank

N = Indicates presumptive evidence of a compound



Page 1 of 1

Client Sample ID: PREABURN SOIL

Lab Sample ID: Matrix:

F580-1

SO - Soil

Date Sampled: 04/23/97 Date Received: 04/25/97

Percent Solids: 92.2

Project:

Site G300 CTO 0027

#### **General Chemistry**

Analyte	Result	RDL	Units	DF	Analyzed By	Method
Solids, Percent Total Organic Halides	92.2 <10	88	% mg/kg	1	04/30/97 лк 05/06/97 suв	EPA 160.3 M SW846 9020 M



Page 1 of !

Client Sample ID: PREABURN SOIL

Lab Sample ID:

F580-1

Matrix:

SO - Soil

Date Sampled: 04/23/97 Date Received: 04/25/97

Percent Solids: 92.2

Project:

Site G300 CTO 0027

#### Metals Analysis

Analyte	Result	RDL	Units	DF	Prep	Analyzed By	Method
Arsenic	< 0.54	0.54	mg/kg	1	05/01/97	05/05/97 лк	SW846 7060
Barium	<22	22	mg/kg	1	05/01/97	05/05/97 лк	SW846 6010A
Cadmium	<1.1	1.1	mg/kg	1	05/01/97	05/05/97 лк	SW846 6010A
Chromium	<1.1	1.1	mg/kg	1	05/01/97	05/05/97 лк	SW846 6010A
Lead	<54	54	mg/kg	1	04/30/97	05/08/97 лк	SW846 6010A
Mercury	< 0.54	0.54	mg/kg	1	05/05/97	05/06/97 лк	SW846 7471A
Selenium	<54	§ 54	mg/kg	1	04/30/97	-05/08/97 лк	SW846 6010A
Silver	<1.1	1.1	mg/kg	1	05/01/97	05/05/97 лк	SW846 6010A



# CHAIN OF USTODY

ORLANDO, FL 32811

ACCUTEST QUOTE	ij.

ACCUTEST JOB #:

						07-423-67																	
	CLIENT INFO	RMATION			FAC	ILITY INF	ORMA	MOITA					<u> </u>		AN	ALY	FICAL	. INF	ORM	IATIO	И	<del></del>	MATRIX CODES
NDDRESS	25E			PROJECT	PROJECT NAME-				· 	6.1	50 61		-										DW - DRINKING WATER GW - GROUND WATER WW - WASTE WATER
HTY,	ITY, STATE ZIP PROJECT NO.				NO.	<del></del>	<del></del>					·2144									ļ		SO - SOIL SL - SLUDGE
END REPORT TO:				FAX #														ļ					OI - OIL LIQ - OTHER LIQUID SOL - OTHER
CCUTEST				CC	LLECTION		ž	LES	PR	ESE	RVAT	ION	14							İ	}		SOLID
SAMPLE #	FIELD ID / P	DINT OF COLLECT	LION	DATE	TIME	SAMPLED BY:	MATRIX	# OF BOTTLES	호	H NO3	H2SO4	NON I	6									Ī	LAB USE ONLY
	1580			1/103/93	177.70	ĞÇ.	80					1	X										
						 	<u> </u>																
		· · · · · · · · · · · · · · · · · · ·																					
							ļ											_					
							ļ			$\perp$				ļ			]				_ _		
			<del></del>							_		$\perp \downarrow$											
							ļ		_	-		1									_		
	······						ļ		-	_	- -									-	-		
	<del></del>	<del></del>					<u> </u>			-	-								-			_	
																				_			
DATA	A TURNAROUNE	INFORMATION			DATA DELI	VERABL	E INFO	DRMA	TIOI									СОМ	MENT	rs/RE	MAR	KS	
$\chi$ other $\mu$	USH MERGENCY AND THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY	APPROVED BY:		STAND COMME DISK D STATE OTHER	ERCIAL "B' ELIVERAB FORMS	LE																	
		AMPLE CUSTODY			D BELOW E				S CI	ANG	E PC				LUD				DEL!\	/ERY			
1:<\(	· · · · · · · · · · · · · · · · · · ·		1201 EX		2.	OUISHE					<u> </u>	re Tin			2.	EIVED							
RELINODISHED BY:	· 1			RECEIVED BY: 4. DATE TIME: RECEIVED BY: 4.																			
RELINQUISHED BY: 5.	LINQUISHED BY: DATE TIME: RECEIVED BY:			SEAL								TEMPERATUREC											



NO. 39150 (9/95)

#### Brown & Root Environmental

455 FAIRWAY DRIVE, SUITE 200 DEERFIELD BEACH, FLORIDA 33441 (305) 570 5885 (305) 570 5074 (CAV)

SITE	MANAGER:	Paul	Call	: 4	44	
				-		

PROJECT NAME: SILE G300 C70 0027

BRE PROJECT NO.: 7540 CODE: __

DO NO 2009-7000-197159

SHIPPED TO: Accutast LABORATORIPAGE LOF 1
Southerst, Inc.
orlando, FC

17TN: Hony Behzad

(303)	) 3/0-30C	. (303)	370-3374 (	· ^^)	P.O. NO	J.: <u>4011</u>	75/	<u> </u>	<i>I.L.</i>		<u>ی</u> ر					]				(LABORATOR)	IVAME	, (111)	,
CHAIN (	OF CUS	TODY	RECORD								L./	\BC	RA	TO	RY	AN	ALY	/SIS	;				
SAMPLED E	BY (PRINI SIGNATURI	I): <u>6</u> x	Jule F. Jule	Goode Goode			TY	IPLE PE	IN X	PI	RES.		No.	pro d	اره ارگاهل	Jord /	/	//	/ / !	とき/ □24 HR.1	□48 н	R. 🗌72	☐ RUSH HR. ☐ 7 DAYS
LAB NO.		TIME	1		TIFICATION	1	COMP.	GRAB	ΑM	PAPA		1/4		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		/ /	$^{\prime}$ $/$		WUMBER	RESULTS DI		E: MENT:	
F5780-1	4/23/57	13:00	Prebur	·~ So:			X		S		1	1	1	1	2		-		7	Surples.	Ice	1	
														1			-						
											<del>- </del>	$\dashv$		1		+		-					
			The freque	50:1 is	« (o-p	cite_				-	_			<del> </del>		-	-	-					
			The frequent a	ollrebed .	From dru	·Muy J				1 }	$\frac{1}{2}$						+	-					
				- <del></del>	······					1	-	-	-	+	_	-	-	-		<del></del>			
				TOTA	AL MUMD		00N	TATA	יוכט		,	-	, ,	,	2		-	-	7				
EMPTY BOTTLES  1 See BUT  RELINOUISHED TO  RELINOUISHED TO	BY (SIGNATU	A C.O.		YES SEAL	AL NUMB INTACT? NO N/A INTACT? NO N/A INTACT?	DATE:	28/6		RE (4)	APTY CEIV	ED B	LES I	RECEIVE GNATE	VED (	BY (SI	GNAT	JRE)			SEAL INTACT YES NO SEAL INTACT YES NO SEAL INTACT	N/A ? N/A	TIME: 9	1/23/17
<u> </u>			S: (.,L. 5	YES I	NO N/A				6	)					ARKS	S:				YES NO	1		
SAMPLE CONTAI	NERS PRECLI	EANED BY: ATORY	□ MANUFACT		метнор с		ENT: _	Fed.	eist									LAE	ING	NO.: 43619 8	27 /	<u>72</u>	
MHITE-FULLY EX YELLOW-RECEIVI PINK-SAMPLERS COLDENROD-SITE	NG LABORAT	ORY COPY	SAMPLING T	EAM: Gen	1d 600d	le.				₿,	Y (SI	GNAT	URE)<		S		` /		2:0	2	No	•	0096

#### **APPENDIX H**

#### **WELL COMPLETION LOGS**

Subject FIELD DOCUMENTATION	Number SA-6.3	Page 23 of 32
	Revision	Effective Date
	0	03/01/96

# ATTACHMENT C-5A EXAMPLE OVERBURDEN MONITORING WELL SHEET (FLUSHMOUNT)

EXAMPLE OVERBURDEN MONITORING WELL SHEET (FLUSHMOUNT)	
Ste 300	
BORING NO.:	
MONITORING WELL SHEET	
5ik 300	
PROJECT 7540 CTO 0027 LOCATION Cost Selan States ORILLER William Lindson DRILLER William Lindson DRILLING PROJECT NO. 7550 BORING PCT-300-2001 METHOD Italiam Stan Age: 4500 DEVELOPMENT METHOD Submuses while Pump	
Ground Elevation TOP OF RISER:	
TYPE OF SURFACE SEAL:  TYPE OF PROTECTIVE CASING:  DIAMETER OF HOLE:  TYPE OF RISER PIPE:  PYC  RISER PIPE I.D.:  TYPE OF BACKFILL/SEAL:  1.0. OF PROTECTIVE CASING:  DIAMETER OF HOLE:  TYPE OF RISER PIPE:  TYPE OF BACKFILL/SEAL:  1.1. OF PROTECTIVE CASING:  DIAMETER OF HOLE:  TYPE OF BACKFILL/SEAL:  1.2 Inch Bontonik Tobiols  G 11  Sodium Bontonik (CETCO)	
DEPTH/ELEVATION TOP OF SAND:	
DEPTH/ELEVATION TOP OF SCREEN:  TYPE OF SCREEN:  SLOT SIZE x LENGTH:  , 010 X /0'	
DEPTH/ELEVATION BOTTOM OF SCREEN: 151	hula
DEPTH/ELEVATION BOTTOM OF SAND:  DEPTH/ELEVATION BOTTOM OF HOLE:  BACKFILL MATERIAL BELOW SANO:	

Subject FIELD DOCUMENTATION	Number SA-6.3	Page 23 of 32
	Revision	Effective Date
	0	03/01/96

# ATTACHMENT C-5A EXAMPLE OVERBURDEN MONITORING WELL SHEET (FLUSHMOUNT)

······································		
		BORING NO.:
	MONITORING W	FII SHEFT
	$GI_{-2}$	
	Sik 300	
PROJECT CTO DO27	OCATION Court System Station	DRILLER William Lindsey
PROJECT NO. 7540 B	ORING PLY - 300 - M-V-02	METHOD Hollow stem Any 4/2
FIELD GEOLOGIST John G Webs	Jan 2	METHOD Substansable Pump
FIELD GEOCOGIST		METHOD JAUNES 290 Parmy
Ground Stevation		
1.000	TELEVATION TOP OF RISER:	
	TYPE OF SURFACE SEAL:	-
Flush mount	TYPE OF PROTECTIVE CASING: 5	tel
surface essing	I.D. OF PROTECTIVE CASING:	an Hale
	OIAMETER OF HOLE: 4.35 10	Angers - Sinch have hele
	1	
	TYPE OF RISER PIPE: PVC	
	RISER PIPE I.D.: 2	451
	RISER FIFE I.U.:	
	16:	1 A L-1. Tololote
	L' above filter pack -	S.J. R. L. J.
	- acce tite pach -	Dearth Death
		3 .
	DEPTH/ELEVATION TOP OF SAND:	
		·
	DEPTH/ELEVATION TOP OF SCREE	:N: <u>'5'/</u>
13=19	TYPE OF SCREEN: PYC	
	SLOT SIZE * LENGTH: .0/0	× / 0'
[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]	TYPE OF SAND PACK: 20/30	6 600
A REFE	TYPE OF SAND PACK:	
	DIAMETER OF HOLE IN BEDROCK:	4.25 ID Ayers. Sinch bere
11 消日的 二	DEPTH/ELEVATION BOTTOM OF S	) 🧲 .
	DEPTH/ELEVATION BOTTOM OF S	
	DEPTH/ELEVATION BOTTOM OF H	
OL UNICA VIII	BACKFILL MATERIAL BELOW SAND	):

Subject FIELD DOCUMENTATION	Number	SA-6.3	Page 23 of 32	
	Revision		Effective Date	
		. 0	03/01/96	
<b>,</b>				- 1

EXAMPLE OVERBURDEN MOI	ACHMENT C-5A NITORING WELL SHEET (FLUSHMOUNT) S, Le 300
	10NITORING WELL SHEET
FIELD GEOLOGIST Jahn G Wobston	ON Coust   System Station  OCY-300-MW-0350  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORILLER W. 11 ion Lindsey  ORIL
Flush mount surface casing with tack  Olame  RISER	of surface seal:  Of protective casing: Steel  F protective casing: 8"  TER OF HOLE: 4.25 ID angers - Prach bere hole  Of RISER PIPE: 10: 25!  OF BACKFILL/SEAL: 12 Inch Conforte Tablets  "above filter pack-Sodium Bantonike
DEPTH TYPE SLOT DIAME DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH	VELEVATION TOP OF SAND:  STEEN LENGTH:

Subject FIELD DOCUMENTATION	Number SA-6.3	Page 23 of 32
	Revision	Effective Date
	0	03/01/96

# ATTACHMENT C-5A EXAMPLE OVERBURDEN MONITORING WELL SHEET (FLUSHMOUNT)

MONITORING WELL SHEET  S/A 300  PROJECT CTO CO27  PROJECT NO. 7540  SORING WY - 200 Shim Shit of PROJECT NO. 7540  SORING WY - 200 Shim Shi of PROJECT NO. 7540  ELEVATION G/L  FIELD GEOLOGIST John G WILSTEN  Cround  Elevation  Cround  Elevation  Clevation top of riser:  Type of surface seal:  Type of surface seal:  Type of for frottenive casing:  John Star pipe:  I.D. of protective casing:  John Star pipe:  I.D. of protective casing:  Filiush mount is surface seal:  Type of for frottenive casing:  John Star pipe:  I.D. of protective casing:  John Star pipe:  I.D. of protective casing:  John Star pipe:  I.D. of protective casing:  John Star pipe:  I.D. of protective casing:  John Star pipe:  I.D. of protective casing:  John Star pipe:  I.D. of protective casing:  John Star pipe:  I.D. of protective casing:  John Star pipe:  I.D. of protective casing:  John Star pipe:  I.D. of protective casing:  John Star pipe:  I.D. of protective casing:  John Star pipe:  I.D. of protective casing:  John Star pipe:  I.D. of protective casing:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:  John Star pipe:	57k 300
PROJECT (TO 0027 LOCATION COULD Switch State Project NO. 7540 SORING W. 570 MW. 64 DRILLER Guillia Link and Soring W. 570 MW. 64 DRILLING METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METHOD METH	BORING NO.:
PROJECT CTO 027 LOCATION Could Seiten State ORILLIA Litalia Linker PROJECT NO. 7540 SORING CY - 200 MW - 94  PROJECT NO. 7540 SORING CY - 200 MW - 94  FILED GEOLOGIST John G Wilesfer 4/12/7)  FILED GEOLOGIST John G Wilesfer 4/12/7)  Cruing  Cruing  Cruing  Flush mount surface easing  TIPE OF SURFACE SEAL:  TIPE OF PROTECTIVE CASING: 5/ec/-Asan lock  Lo. OF PROTECTIVE CASING: 9/och - 9/och birchel  TIPE OF RISER PIPE: NC  RISER PIPE: I.O.: 25/  Grand Files And Color And Color  Grand Files And Color  TIPE OF BACKFILL/SEAL: 2/och Dentrity Tablets  G' about Attempted - Seation Menteurs  OPPTH/ELEVATION TOP OF SAND:  1. TIPE OF SCREEN: NC  SLOT SIZE x LENGTH: .0/0 x /0'  TIPE OF SAND PACK: 10/0 x /0'  OPPTH/ELEVATION BOTTOM OF SCREEN: 15/1/  OPPTH/ELEVATION BOTTOM OF SCREEN: 15/1/  OPPTH/ELEVATION BOTTOM OF SCREEN: 15/1/ OPPTH/ELEVATION BOTTOM OF SCREEN: 15/1/ OPPTH/ELEVATION BOTTOM OF SCREEN: 15/1/ OPPTH/ELEVATION BOTTOM OF MOLE: 15/1/ BACKFILL MATERIAL SECON SANO: 15/1/  OPPTH/ELEVATION BOTTOM OF MOLE: 15/1/ BACKFILL MATERIAL SECON SANO: 15/1/  DEPTH/ELEVATION BOTTOM OF MOLE: 15/1/ BACKFILL MATERIAL SECON SANO: 15/1/  DEPTH/ELEVATION BOTTOM OF MOLE: 15/1/ BACKFILL MATERIAL SECON SANO: 15/1/  DEPTH/ELEVATION BOTTOM OF MOLE: 15/1/ BACKFILL MATERIAL SECON SANO: 15/1/  BACKFILL MATERIAL SECON SANO: 15/1/  DEPTH/ELEVATION BOTTOM OF MOLE: 15/1/ BACKFILL MATERIAL SECON SANO: 15/1/  DEPTH/ELEVATION BOTTOM OF MOLE: 15/1/ BACKFILL MATERIAL SECON SANO: 15/1/ BACKFILL MATERIAL SECON SANO: 15/1/ BACKFILL MATERIAL SECON SANO: 15/1/ BACKFILL MATERIAL SECON SANO: 15/1/ BACKFILL MATERIAL SECON SANO: 15/1/ BACKFILL MATERIAL SECON SANO: 15/1/ BACKFILL MATERIAL SECON SANO: 15/1/ BACKFILL MATERIAL SECON SANO: 15/1/ BACKFILL MATERIAL SECON SANO: 15/1/ BACKFILL MATERIAL SECON SANO: 15/1/ BACKFILL MATERIAL SECON SANO: 15/1/ BACKFILL MATERIAL SECON SANO: 15/1/ BACKFILL MATERIAL SECON SANO: 15/1/ BACKFILL MATERIAL SECON SANO: 15/1/ BACKFILL MATERIAL SECON SANO: 15/1/ BACKFILL MATERIAL SECON SANO: 15/1/ BACKFILL MATERIAL SECON SANO: 15/1/ B	MONITORING WELL SHEET
PROJECT NO. 75 40  SORING W - 300 AW. GY  ELEVATION GILL  DATE 4/122/97  FIELD GEOLOGIST John G Wilsking  FIRST MOUNT  SCHOOL OF STATE AND THE PROPERTY CASING:  FIRST MOUNT SUITORE ESTING  TYPE OF ROTECTIVE CASING:  TYPE OF RISER PIPE:  OEPTH/ELEVATION TOP OF SAND:  DEPTH/ELEVATION TOP OF SAND:  TYPE OF SAND PACK:  TYPE OF SCREEN:  TYPE OF SCREEN:  TYPE OF SCREEN:  TYPE OF SCREEN:  TYPE OF SCREEN:  TYPE OF SCREEN:  TYPE OF SCREEN:  TYPE OF SCREEN:  TYPE OF SCREEN:  TYPE OF SCREEN:  TYPE OF SCREEN:  TYPE OF SCREEN:  TYPE OF SCREEN:  TYPE OF SCREEN:  TYPE OF SCREEN:  TYPE OF SCREEN:  TYPE OF SCREEN:  TYPE OF SCREEN:  TYPE OF SCREEN:  TYPE OF SCREEN:  TYPE OF SAND PACK:  OEPTH/ELEVATION BOTTOM OF SCREEN:  OEPTH/ELEVATION BOTTOM OF SAND:  OEPTH/ELEVATION BOTTOM OF SAND:  OEPTH/ELEVATION BOTTOM OF SAND:  OEPTH/ELEVATION BOTTOM OF SAND:  OEPTH/ELEVATION BOTTOM OF SAND:  OEPTH/ELEVATION BOTTOM OF SAND:  OEPTH/ELEVATION BOTTOM OF SAND:  OEPTH/ELEVATION BOTTOM OF SAND:  OEPTH/ELEVATION BOTTOM OF SAND:  OEPTH/ELEVATION BOTTOM OF SAND:  OEPTH/ELEVATION BOTTOM OF SAND:  OEPTH/ELEVATION BOTTOM OF SAND:  OEPTH/ELEVATION BOTTOM OF SAND:  OEPTH/ELEVATION BOTTOM OF MOLE:  DEPTH/ELEVATION BOTTOM OF MOLE:  OEPTH/ELEVATION	
ELEVATION TOP OF RISER:  TYPE OF SURFACE SEAL:  TYPE OF PROTECTIVE CASING: Steel-May be leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader that the leader	PROJECT NO. 7540  BORING PCY - 300 = MW - 04  ELEVATION G/L  SIST D COLORIST Tohn C LIVE See Auger 4
TYPE OF SURFACE SEAL:  TYPE OF PROTECTIVE CASING:  JEC   MAN Kele  LID. OF PROTECTIVE CASING:  DIAMETER OF HOLE: 4.25 Mage - Pinch bise hele  TYPE OF RISER PIPE:  OF BACKFILL/SEAL: 1/2 meh Bentonith Tablets  G' above Ather pack - Sodium Acatomits  DEPTH/ELEVATION TOP OF SAND:  TYPE OF SCREEN:  TYPE OF SAND PACK:  DOPTH/ELEVATION OF SAND:  OCHTH/ELEVATION BOTTOM OF SAND:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM OF MOLE:  DOPTH/ELEVATION BOTTOM	Flewtion
TYPE OF PROTECTIVE CASING: Steet - MARY Mela  LD. OF PROTECTIVE CASING: S  DIAMETER OF HOLE: 4.25 theger - Sinch bise held  TYPE OF BROXFILL/SEAL: 12 Truch Bentonita Tablets  G' above Hiterpach - Sodiam bintonita  DEPTH/ELEVATION TOP OF SAND:  TYPE OF SCREEN: N/C  SLOT SIZE X LENGTH: 0/0 X /0'  TYPE OF SAND PACK: 10/30 - 6 bigs  DIAMETER OF HOLE IN BEDROCK: 17 theger - Singh binchola  DEPTH/ELEVATION BOTTOM OF SCREEN: 15 / 15 / 16 / 15 / 16 / 15 / 16 / 15 / 16 / 15 / 16 / 15 / 16 / 15 / 16 / 15 / 16 / 15 / 16 / 15 / 16 / 15 / 16 / 15 / 16 / 15 / 16 / 15 / 16 / 15 / 16 / 15 / 16 / 15 / 16 / 15 / 16 / 15 / 16 / 15 / 16 / 15 / 16 / 16	ELEVATION TOP OF RISER:
DIAMETER OF MOLE: 4.25 Anger - 9 inch bischeld  TIPE OF RISER PIPE: DVC  RISER PIPE I.D.: 3 5'  TIPE OF BACKFILL/SEAL: 1/2 inch Beaforn to Tablets  G" about filter pack - Sodicion Beaforn to Tablets  OEPTH/ELEVATION TOP OF SCREEN:  TYPE OF SCREEN: PVC  SLOT SIZE x LENCTH: . 0/0 x /0'  TYPE OF SAND PACK: 30/30 - 6 bags  DIAMETER OF HOLE IN BEDROCK: 477 Angers - 9 inch bischeld  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF	
DIAMETER OF MOLE: 4.25 Anger - 9 inch bischeld  TIPE OF RISER PIPE: DVC  RISER PIPE I.D.: 3 5'  TIPE OF BACKFILL/SEAL: 1/2 inch Beaforn to Tablets  G" about filter pack - Sodicion Beaforn to Tablets  OEPTH/ELEVATION TOP OF SCREEN:  TYPE OF SCREEN: PVC  SLOT SIZE x LENCTH: . 0/0 x /0'  TYPE OF SAND PACK: 30/30 - 6 bags  DIAMETER OF HOLE IN BEDROCK: 477 Angers - 9 inch bischeld  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF SCREEN: 1/5 /  DEPTH/ELEVATION BOTTOM OF	Surface cosing TYPE OF PROTECTIVE CASING: Steet - Man hele
TYPE OF RISER PIPE:  RISER PIPE 1.D.:  TYPE OF BACKFILL/SEAL: 1/2 inch Bentonin Tablets  G"above filter pack - Sodium Bentonin  DEPTH/ELEVATION TOP OF SAND:  TYPE OF SAND PACK:  TYPE OF SAND PACK:  OIAMETER OF HOLE IN BEDROCK: 477 Augus - 9 inch bir hole  DEPTH/ELEVATION BOTTOM OF SAND:  DEPTH/ELEVATION BOTTOM OF SAND:  DEPTH/ELEVATION BOTTOM OF SAND:  DEPTH/ELEVATION BOTTOM OF SAND:  DEPTH/ELEVATION BOTTOM OF SAND:  DEPTH/ELEVATION BOTTOM OF FAND:  DEPTH/ELEVATION BOTTOM OF HOLE:  BACKFILL MATERIAL BELOW SAND:	LD. OF PROTECTIVE CASING:
RISER PIPE I.D.:  TYPE OF BACKFILL/SEAL: 1/2 meh Bentonite Tablets  G" above fitter pech - Sedium Bentonite  DEPTH/ELEVATION TOP OF SAND:  TYPE OF SCREEN:  TYPE OF SCREEN:  SLOT SIZE x LENGTH:	DIAMETER OF HOLE: 7.1) Anger - Yinch bise hele
RISER PIPE I.D.:  TYPE OF BACKFILL/SEAL: 1/2 meh Bentonite Tablets  G" above fitter pech - Sedium Bentonite  DEPTH/ELEVATION TOP OF SAND:  TYPE OF SCREEN:  TYPE OF SCREEN:  SLOT SIZE x LENGTH:	THE OF RISER PIPE. PVC
DEPTH/ELEVATION TOP OF SAND:  OEPTH/ELEVATION TOP OF SCREEN:  TYPE OF SAND PACK:  DIAMETER OF HOLE IN BEDROCK: 475 Augus - 8 inch bis e hole  DEPTH/ELEVATION BOTTOM OF SAND:  DEPTH/ELEVATION BOTTOM OF SAND:  DEPTH/ELEVATION BOTTOM OF SAND:  DEPTH/ELEVATION BOTTOM OF SAND:  DEPTH/ELEVATION BOTTOM OF SAND:  DEPTH/ELEVATION BOTTOM OF SAND:  DEPTH/ELEVATION BOTTOM OF SAND:  DEPTH/ELEVATION BOTTOM OF SAND:	RISER PIPE I.D.: 25'
DEPTH/ELEVATION TOP OF SAND:    DEPTH/ELEVATION TOP OF SCREEN:   S	
DEPTH/ELEVATION TOP OF SAND:    DEPTH/ELEVATION TOP OF SCREEN:   S	TYPE OF BACKFILL/SEAL 1/2 Inch Bentonite Tablets
DEPTH/ELEVATION TOP OF SCREEN:  TYPE OF SCREEN:  SLOT SIZE x LENGTH: 0/0 x /0'  TYPE OF SAND PACK: 20/30 - 6 bags  OIAMETER OF HOLE IN BEDROCK: 478 Augers - 8 inch bire hole  DEPTH/ELEVATION BOTTOM OF SCREEN:  DEPTH/ELEVATION BOTTOM OF SAND:  DEPTH/ELEVATION BOTTOM OF HOLE:  DEPTH/ELEVATION BOTTOM OF HOLE:  BACKFILL MATERIAL BELOW SAND:	6" above Lither pack - Sudiam Bentonike
DEPTH/ELEVATION TOP OF SCREEN:  TYPE OF SCREEN:  SLOT SIZE x LENGTH: 0/0 x /0'  TYPE OF SAND PACK: 20/30 - 6 bags  OIAMETER OF HOLE IN BEDROCK: 478 Augers - 8 inch bire hole  DEPTH/ELEVATION BOTTOM OF SCREEN:  DEPTH/ELEVATION BOTTOM OF SAND:  DEPTH/ELEVATION BOTTOM OF HOLE:  DEPTH/ELEVATION BOTTOM OF HOLE:  BACKFILL MATERIAL BELOW SAND:	
DEPTH/ELEVATION TOP OF SCREEN:  TYPE OF SCREEN:  SLOT SIZE x LENGTH: 0/0 x /0'  TYPE OF SAND PACK: 20/30 - 6 bags  OIAMETER OF HOLE IN BEDROCK: 478 Augers - 8 inch bire hole  DEPTH/ELEVATION BOTTOM OF SCREEN:  DEPTH/ELEVATION BOTTOM OF SAND:  DEPTH/ELEVATION BOTTOM OF HOLE:  DEPTH/ELEVATION BOTTOM OF HOLE:  BACKFILL MATERIAL BELOW SAND:	
DEPTH/ELEVATION TOP OF SCREEN:  TYPE OF SCREEN:  SLOT SIZE x LENGTH: 0/0 x /0'  TYPE OF SAND PACK: 20/30 - 6 bags  OIAMETER OF HOLE IN BEDROCK: 478 Augers - 8 inch bire hole  DEPTH/ELEVATION BOTTOM OF SCREEN:  DEPTH/ELEVATION BOTTOM OF SAND:  DEPTH/ELEVATION BOTTOM OF HOLE:  DEPTH/ELEVATION BOTTOM OF HOLE:  BACKFILL MATERIAL BELOW SAND:	
DEPTH/ELEVATION TOP OF SCREEN:  TYPE OF SCREEN:  SLOT SIZE x LENGTH: 0/0 x /0'  TYPE OF SAND PACK: 20/30 - 6 bags  OIAMETER OF HOLE IN BEDROCK: 478 Augers - 8 inch bire hole  DEPTH/ELEVATION BOTTOM OF SCREEN:  DEPTH/ELEVATION BOTTOM OF SAND:  DEPTH/ELEVATION BOTTOM OF HOLE:  DEPTH/ELEVATION BOTTOM OF HOLE:  BACKFILL MATERIAL BELOW SAND:	
DEPTH/ELEVATION TOP OF SCREEN:  TYPE OF SCREEN:  SLOT SIZE x LENGTH: 0/0 x /0'  TYPE OF SAND PACK: 20/30 - 6 bags  OIAMETER OF HOLE IN BEDROCK: 478 Augers - 8 inch bire hole  DEPTH/ELEVATION BOTTOM OF SCREEN:  DEPTH/ELEVATION BOTTOM OF SAND:  DEPTH/ELEVATION BOTTOM OF HOLE:  DEPTH/ELEVATION BOTTOM OF HOLE:  BACKFILL MATERIAL BELOW SAND:	
DEPTH/ELEVATION TOP OF SCREEN:  TYPE OF SCREEN:  SLOT SIZE x LENGTH: 0/0 x /0'  TYPE OF SAND PACK: 20/30 - 6 bags  OIAMETER OF HOLE IN BEDROCK: 478 Augers - 8 inch bire hole  DEPTH/ELEVATION BOTTOM OF SCREEN:  DEPTH/ELEVATION BOTTOM OF SAND:  DEPTH/ELEVATION BOTTOM OF HOLE:  DEPTH/ELEVATION BOTTOM OF HOLE:  BACKFILL MATERIAL BELOW SAND:	DEPTH/ELEVATION TOP OF SAND:
TYPE OF SCREEN: PVC  SLOT SIZE x LENGTH: . 0/0 x /0'  TYPE OF SAND PACK: 20/30 - 6 bags  OIAMETER OF HOLE IN BEDROCK: 477 Angers - 8 inch bire hole  DEPTH/ELEVATION BOTTOM OF SCREEN: 15.5 /  DEPTH/ELEVATION BOTTOM OF SAND: 15.5 /  DEPTH/ELEVATION BOTTOM OF HOLE: 15.5 /  BACKFILL MATERIAL BELOW SAND:	
TYPE OF SCREEN: PVC  SLOT SIZE x LENGTH: . 0/0 x /0'  TYPE OF SAND PACK: 20/30 - 6 bags  OIAMETER OF HOLE IN BEDROCK: 477 Angers - 8 inch bire hole  DEPTH/ELEVATION BOTTOM OF SCREEN: 15.5 /  DEPTH/ELEVATION BOTTOM OF SAND: 15.5 /  DEPTH/ELEVATION BOTTOM OF HOLE: 15.5 /  BACKFILL MATERIAL BELOW SAND:	
TYPE OF SCREEN: PVC  SLOT SIZE x LENGTH: . 0/0 x /0'  TYPE OF SAND PACK: 20/30 - 6 bags  OIAMETER OF HOLE IN BEDROCK: 477 Angers - 8 inch bire hole  DEPTH/ELEVATION BOTTOM OF SCREEN: 15.5 /  DEPTH/ELEVATION BOTTOM OF SAND: 15.5 /  DEPTH/ELEVATION BOTTOM OF HOLE: 15.5 /  BACKFILL MATERIAL BELOW SAND:	DEPTH /FLEVATION TOP OF SCREEN:
SLOT SIZE x LENGTH:	
OIAMETER OF HOLE IN BEDROCK: 475 Angers - 8 inch bire hole  DEPTH/ELEVATION BOTTOM OF SCREEN:  DEPTH/ELEVATION BOTTOM OF SAND:  DEPTH/ELEVATION BOTTOM OF HOLE:  BACKFILL MATERIAL BELOW SAND:	51 - 1 SLOT SIZE & LENGTH: . 0/0 x /0'
DEPTH/ELEVATION BOTTOM OF SCREEN:  DEPTH/ELEVATION BOTTOM OF SAND:  DEPTH/ELEVATION BOTTOM OF HOLE:  BACKFILL MATERIAL BELOW SAND:	
DEPTH/ELEVATION BOTTOM OF SCREEN:  DEPTH/ELEVATION BOTTOM OF SAND:  DEPTH/ELEVATION BOTTOM OF HOLE:  BACKFILL MATERIAL BELOW SAND:	
DEPTH/ELEVATION BOTTOM OF SCREEN:  DEPTH/ELEVATION BOTTOM OF SAND:  DEPTH/ELEVATION BOTTOM OF HOLE:  BACKFILL MATERIAL BELOW SAND:	TYPE OF SAND PACK: 00/30 -6 5495
DEPTH/ELEVATION BOTTOM OF SAND:  DEPTH/ELEVATION BOTTOM OF HOLE:  BACKFILL MATERIAL BELOW SAND:	OIAMETER OF HOLE IN BEDROCK: 475 Angers - Sinch bire hole
DEPTH/ELEVATION BOTTOM OF HOLE: /5.5 / BACKFILL MATERIAL BELOW SAND:	
BACKFILL MATERIAL BELOW SAND:	
	BACKFILL MATERIAL BELOW SAND:



## MONITORING WELL SHEET

PROJECT CTO 0027 PROJECT NO. 7540 ELEVATION Relative FIELD GEOLOGIST Gentle	LOCATION 6-300  BORING 5807  DATE 3/19/97 to 3/21/97	DRILLER Joson Anglin DRILLING METHOD Hond-Age( DEVELOPMENT METHOD Peristolalte Pup
Ground Elevation  8-inch Sheel Monthle (Dianeth) Flush mount surface casing with lack	TYPE OF BACKFILL/SEAL:	40 Tours O-Rings
	Berbile pellet 2 to	2 1 . 7 44 1
	SLOT SIZE * LENGTH: 0.00	Duc 14" of (Threaded/Roll-
	DIAMETER OF HOLE IN BEDROCK  DEPTH/ELEVATION BOTTOM OF  DEPTH/ELEVATION BOTTOM OF  DEPTH/ELEVATION BOTTOM OF  BACKFILL MATERIAL BELOW SAN	SCREEN: 14' /-3.56: SAND: 14' /-3.56: HOLE: 12' /-3.56



## MONITORING WELL SHEET

PROJECT NO. 7540 BC	DCATION G-300  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER Jason Anglin  DRILLER
FIELD GEOLOGIST Genell Good	METHOD Peristalhie from
Ground Elevation	(Buchhork)  ELEVATION TOP OF RISER: 10.00 Arbiting dahm point.  2.inch dia pre well cap sterve
River mount surface casing with lack	TYPE OF SURFACE SEAL: Portland Count  TYPE OF PROTECTIVE CASING:  1.D. OF PROTECTIVE CASING:  OIAMETER OF HOLE: Paly"  TYPE OF RISER PIPE: Sch. 40 Threaded proc  RISER PIPE add:
	DEPTH/ELEVATION TOP OF SAND: 3' 17.0  Natural Sal Port to 8.2' bis
	TYPE OF SCREEN: SCH. 40 PUC 14" OD (Throla) rether SLOT SIZE x LENGTH: 6.010" Slot w/10' Screen
274: MM/02/02001200	OIAMETER OF HOLE IN BEDROCK:  DEPTH/ELEVATION BOTTOM OF SCREEN:  DEPTH/ELEVATION BOTTOM OF SAND:  DEPTH/ELEVATION BOTTOM OF HOLE:  BACKFILL MATERIAL BELOW SAND:



# MONITORING WELL SHEET

PROJECT NO. 7540 B	OCATION 6-300 ORING 5010 ATE 3/19/97 to 3/21/97	DRILLER Josen Anglia DRILLING METHOD Direct Pos C  DEVELOPMENT METHOD Per isholtic Pom
Cround Slevation		
	ELEVATION TOP OF RISER:	10.17
8-inch steel	2-inch din puc shell cap Sheru	1/
Montrale ( Diameter)	TYPE OF SURFACE SEAL: Portland	d Comet
Flush mount	TYPE OF PROTECTIVE CASING:	•
surface casing	1.0. OF PROTECTIVE CASING:	<u> </u>
	i e	<del></del>
	OIAMETER OF HOLE: 24"	
	TYPE OF RISER PIPE: 5411. 40	Threeded Avc
	11/4"	
	RISER PIPE 1.0.: 14"  R-64 0-1-	Seel
	1	
	TYPE OF BACKFILL/SEAL: P	-d Comet
	The of sketched seat.	
		•
	Bentonite Pell-et's	•
	Bentonite Pellets (hydralad) 2003	· b/s
		•
		•
		3/ 17.17
	DEPTH/ELEVATION TOP OF SANO:	
	Natural Sund Park	to 8.4 bls
	,	
	DEPTH/ELEVATION TOP OF SCREEN	: 4/16.17
1.1=11	TYPE OF SCREEN: SOH YO PUC SLOT SIZE x LENGTH: 0.0/0"	14400 72. 11/011.
1 1 原本	TYPE OF SCREEN: SEH 40 PUE	n-ozal
	SLOT SIZE x LENGTH: 0.0/0"	Not u/10' Screen
	1.	- 1
	TYPE OF SAND PACK: 2% 5:1	ica Sad
	DIAMETER OF HOLE IN BEDROCK:_	N4
1	TOTAL (ELEVA BON BOTTO: OF SCI	FEN. 14 /-3.83
	DEPTH/ELEVATION BOTTOM OF SCR	
L. KERN	DEPTH/ELEVATION BOTTOM OF SAN	. / 7 %
	DEPTH/ELEVATION BOTTOM OF HOL	
בתני עוייותם /סביסופיה	BACKFILL MATERIAL BELOW SAND:	

#### APPENDIX I

# FIELD SCREENING TPH-DRO DATA SHEETS FOR GROUNDWATER AND SOIL



#### **DATA REPORT**

# BROWN & ROOT ENVIRONMENTAL 1311 EXECUTIVE CENTER DRIVE - ELLIS BUILDING, SUITE 220 TALLAHASSEE, FL 32301

CSS, PANAMA CITY, FL - SITE G-300 PROJECT NO. CTO 0027 (7540)

#### **TEG PROJECT # 1-97178-A1**

#### TPH-DRO ANALYSIS OF WATER (EPA METHOD 3510/8015 Mod.)

DATA REPORTED IN MILLIGRAMS PER LITER (PPM)

SAMPLE	DATE	DATE	TPH-DRO	Surrogate	Data	
D	COLLECTED	ANALYZED	(mg/L)	Recovery (%)	Qualifiers	PQL
		04007		400		0.50
METHOD BLANK		3/18/97	ND	108		0.50
G300-SB01-GW-1012	3/18/97	3/18/97	ND	104		0.50
G300-SB02-GW-1012	3/18/97	3/18/97	ND	94.5		0.50
G300-SB03-GW-1012	3/18/97	3/18/97	ND	105		0.50
G300-SB04-GW-1012	3/18/97	3/18/97	1.78	95.9		0.50
						0.50
METHOD BLANK		3/19/97	ND	107		0.50
G300-SB05-GW-1012	3/18/97	3/19/97	ND	101		0.50
G300-SB06-GW-1012	3/19/97	3/19/97	ND	97.6		0.50
G300-SB07-GW-1214	3/19/97	3/19/97	ND	85.1		0.50
G300-SB08-GW-1012	3/19/97	3/19/97	ND	92.3		0.50
G300-SB09-GW-1011	3/19/97	3/19/97	17.4	106		0.50
						0.50
METHOD BLANK		3/20/97	ND	107		0.50
G300-SB09-GW-1011 DUP	3/19/97	3/20/97	15.5	95.1		0.50
G300-SB10-GW-1011	3/19/97	3/20/97	ND	98.4		0.50
G300-SB11-GW-1012	3/20/97	3/20/97	ND	85.1		0.50
G300-SB12-GW-1012	3/20/97	3/20/97	2.83	87.0		0.50
G300-SB13-GW-1012	3/20/97	3/20/97	0.875	108		0.50
G300-SB14-GW-1012	3/20/97	3/20/97	10.0	95.1		0.50
G300-SB15-GW-1012	3/20/97	3/21/97	ND	MI		0.50

"ND" INDICATES ANALYTE NOT DETECTED AT OR ABOVE LISTED PRACTICAL QUANTITATION LIMITS (PQL'S)

ANALYSIS PERFORMED IN TEG'S CERTIFIED MOBILE LABORATORY

ANALYSIS PERFORMED BY: MATTHEW STEERE

DATA REVIEWED BY: JONATHAN R. MILLER, RHSP

#### **DATA QUALIFIERS**

MI = MATRIX INTERFERENCE

DO = SURROGATE SPIKE DILUTED OUT

D = SAMPLE VALUE OBTAINED BY DILUTION, PQL IS ADJUSTED ACCORDINGLY

E = ESTIMATED CONCENTRATION(S)

197178A2.XLS



#### **QA/QC DATA REPORT**

BROWN & ROOT ENVIRONMENTAL

1311 EXECUTIVE CENTER DRIVE - ELLIS BUILDING, SUITE 220

TALLAHASSEE, FL 32301

CSS, PANAMA CITY, FL - SITE G-300 PROJECT NO. CTO 0027 (7540)

**TEG PROJECT # 1-97178-A1** 

TPH-DRO ANALYSIS OF WATER (EPA METHOD 3510/8015 Mod.)

DATE ANALYZED: 2/6/97

	TOUR	
	TPH-DRO	
	(mg/L)	<del></del>
MATRIX SPIKE		
SPIKED CONC.	5.00	
MEASURED CONC.	5.27	
% RECOVERY	105.4%	
MATRIX SPIKE DUPLICATE		
SPIKED CONC.	5.00	
MEASURED CONC.	4.97	
% RECOVERY	99.4%	
RELATIVE PERCENT		
DIFFERENCE (RPD)	5.9%	

ANALYSIS PERFORMED IN TEG'S CERTIFIED MOBILE LABORATORY

ANALYSIS PERFORMED BY: MATTHEW STEERE

DATA REVIEWED BY: JONATHAN R. MILLER, RHSP



#### **DATA REPORT**

# BROWN & ROOT ENVIRONMENTAL 1311 EXECUTIVE CENTER DRIVE - ELLIS BUILDING, SUITE 220 TALLAHASSEE, FL 32301

CSS, PANAMA CITY, FL - SITE G-300 PROJECT NO. CTO 0027 (7540)

#### **TEG PROJECT # 1-97178-A1**

#### TPH-DRO ANALYSIS OF SOIL (EPA METHOD 3550/8015 Mod.)

DATA REPORTED IN MILLIGRAMS PER KILOGRAM (PPM)

SAMPLE	DATE	DATE	TPH-DRO	Surrogate	Data	
ID	COLLECTED	ANALYZED	(mg/kg)	Recovery (%)	Qualifiers	PQL
METHOD BLANK		3/18/97	ND	122		10
G300-SB01-SS-0810	3/18/97	3/18/97	ND	117		10
G300-SB02-SS-0607	3/18/97	3/18/97	ND	` 121		10
G300-SB03-SS-0607	3/18/97	3/18/97	ND	119		10
METHOD BLANK		3/19/97	ND	118	<del></del>	10
G300-SB04-SS-0507	3/18/97	3/19/97	7280	DO	۵	40
G300-SB04-SS-0507 DUP	3/18/97	3/19/97	7240	DO	D	40
G300-S805-SS-0507	3/18/97	3/19/97	4820	121		10
G300-SB06-SS-0507	3/19/97	3/19/97	ND	108		10
G300-SB07-SS-0406	3/19/97	3/19/97	ND ·	126		10
C300-SB08-SS-0507	3/19/97	3/19/97	ND	117		10
G300-SB09-SS-0607	3/19/97	3/19/97	4980	87.2		10
METHOD BLANK		3/20/97	ND	94.8		10
G300-SB10-SS-0507	3/19/97	3/20/97	ND	91.0		10
G300-SB11-SS-0507	3/20/97	3/20/97	ND	87.2		10
G300-SB12-SS-0507	3/20/97	3/20/97	ND	102		10
G300-SB13-SS-0507	3/20/97	3/20/97	22.1	98.6		10
G300-SB14-SS-0507	3/20/97	3/20/97	ND	103		10
G300-SB15-SS-0507	3/20/97	3/21/97	ND	752		10

"ND" INDICATES ANALYTE NOT DETECTED AT OR ABOVE LISTED PRACTICAL QUANTITATION LIMITS (PQL'S)

ANALYSIS PERFORMED IN TEG'S CERTIFIED MOBILE LABORATORY

ANALYSIS PERFORMED BY: MATTHEW STEERE

DATA REVIEWED BY: JONATHAN R. MILLER, RHSP

#### DATA QUALIFIERS

MI = MATRIX INTERFERENCE

DO = SURROGATE SPIKE DILUTED OUT

D = SAMPLE VALUE OBTAINED BY DILUTION, PQL IS ADJUSTED ACCORDINGLY

E = ESTIMATED CONCENTRATION(S)

197178A1.XLS



#### **QA/QC DATA REPORT**

# BROWN & ROOT ENVIRONMENTAL 1311 EXECUTIVE CENTER DRIVE - ELLIS BUILDING, SUITE 220 TALLAHASSEE, FL 32301

CSS, PANAMA CITY, FL - SITE G-300 PROJECT NO. CTO 0027 (7540)

TEG PROJECT # 1-97178-A1

TPH-DRO ANALYSIS OF SOIL (EPA METHOD 3550/8015 Mod.)

DATE ANALYZED: 3/17/97

	TPH-DRO	
	(mg/kg)	
MATRIX SPIKE		
SPIKED CONC.	500	
MEASURED CONC.	464	
% RECOVERY	92.8%	
MATRIX SPIKE DUPLICATE		
SPIKED CONC.	500	
MEASURED CONC.	482	
% RECOVERY	96.4%	
RELATIVE PERCENT		
DIFFERENCE (RPD)	3.8%	

ANALYSIS PERFORMED IN TEG'S CERTIFIED MOBILE LABORATORY

ANALYSIS PERFORMED BY: MATTHEW STEERE

DATA REVIEWED BY: JONATHAN R. MILLER, RHSP

### TRANSGLOBAL

ENVIRONMENTAL

GEOCHEMISTRY, INC.

# CHAIN-OF-CUSTODY RECORD

CLIENT:/	CLIENT: EXONN & ROCK ENVIRONMENTAL. ADDRESS: 1811 EXECUTIVE CENTER TRIVE ELLIS ELLISTIMONS, SALOR 220												D/	ATE:	M	14:2		<u> </u>	إعزيرا	17	P/	GE _	, /		OF		
ADDRESS: /	3/1 Ex	 ازرون	va C	ZNIFE TRIVE	811	15	drie	1718	سے دستار کستار	·toje	2.7	0	TE	G P	'ROJ	ECT	#:		1	74	79	8	41				<del></del>
CITY:	16:15		1 2 5	STATE: FL			_ZIP:		12-36	CV.			LC	CAT	ΓΙΟΝ	):	خ	<del>55-5</del> ,	·,	وإشرش	رايم م	del-fo	11	7			<del>.</del>
PHONE / 1/2	1) (	-56-	1.4 2.35	FAX: (9/22	1	60	See and	94	100				_			<del>,</del>		<del>, -</del>			-+	<del></del>	<u> </u>				
CLIENT PROJE	ECT #:C	Tit Ca	97 C	PROJECT M	ANA(	3ER:	$\overline{\rho_a}$	1 (	1//2	50.1		_	CC	OLLE	ECTC	7 28: 5	, . k. k.e.	. <u>u</u> ,	· - · .	. (.		~, &ks	DAT COLLE	E OF CTION:	3/18	117	
						.65		_	70	7	7	ارسب									$\overline{}$					er grs	i i
I	/		1		AMA!	5/8	3)/80.	/&/	80°			\&\ \		5 / S	5/6	4/8	//	/S/	/ /	/ /	/ /	//				umb	Laboratory Note Number
,			Sample		PIL	(§),	<i>ૄ</i> ૹૢૺૺૺૺૺૄૼ	14/10	/x%/	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3/8	\\s\\\\s\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		(3)/		\\ \\\		5/	Ι.	Ι,	Ι.	//				S S S	ora te N
Sample Number	Depth	Time	Туре	Container Type	1/20	10/0/ 0/0/ 0/0/						X/4		78°	%) 	13/		$\angle$	_	_	_		FIEL	D NO	res	្គី ក	SE
G20- 5801 - 65- 1000	F-10"		50.0	1. 400.						<b>Г</b>																	
1100 Siloi-	1.5-12			2-VOAS						1												I			•		
6300 - 1012 6300 - 7902 - 50, - 0007	6-7		pare.					1	1.	-				$\top$		1		1									
618181-2-	10-12		-	2 - VOA5					2	7					1.		1	1	1								1
कार्या क्षेत्र हैं। इंग्लंड क्ष्मिन	6.7		Son.	1						<b>L</b>				$\neg$	$\top$		+	1	1							1	1
613.0 - Par 3.	6-13		1170	4 - VUAS		1		$\top$	1					1		1	1	+	1				<del></del>			1	
1760 FUI	5.7		Sal	1 - 40%		$\top$	1	1		-				7	7		1	1	1				1			1	
520-58114 Gw-1011	10-12		Hou	2- VOA5		$\top$	1	$\Box$		v v				1		1	1	1	_					-			
113-1 7565 (1554)	5,- 7		€:016-	ļ										1		1	+	1	$\top$							1	
4300 5005 6160 - 1017	10.10!		1170	2- VUAS		$\top$	$\top$		1	-				1		$\top$	1	1								1	
	· ·		<del></del>			$\top$	1							1	$\top$	1	1	1									
,						1				1				丁	$\top$	_	8	1							=		
	i		<del></del>					1		1				_			1	1	1		<u> </u>					1	
			· · · · · ·			+	1	1		_				1	$\top$	1	1	+	+	<del>  </del>	<del> </del>					1	1
				i i	<del>                                      </del>	+		+	_	1			$\dashv$	1		1	+	+	<del>                                      </del>							1	1
	1				1	-		+	-					+	+	_	+	+-	†							-	
					-	-	-	+	+	-	-		-	+	-	+	+-	+	+							-	<del> </del>
RELINQUISHED B	Y: (Signa	ture)	DATE	J						LE/LIWI				L S	—⊢ ΔMP	LE F	REC	LEIP'	 T	$\vdash$	<u> </u>	1 ARO	PATO	RY NO	res.		<del></del>
1. Willow	de			Ma	H	14	Liv		3/4	9/9-	7-	TC	TAL							is	$\dashv$	LADO	na i o	ni no	I Eu.		
											CH	IAIN (	OF (	 วบรา		'SE/	4LS	Y/N/I	NA.	$\dashv$						,	
											SE	SEALS INTACT? Y/N/NA															
												RE	CEIV	'ED	GOC	D C	OND	./co	LD								]
<del> • • • • • • • • • • • • • • • • •</del>												NOTES:															



# TRANSGLOBAL SUPERINGENERAL GEOCHEMISTRY,

# CHAIN-OF-CUSTODY RECORD P.O. #:

CLIENT: Buo	CLIENT: BROWN & FORT ENVIRONMENTAL  ADDRESS: THE STATE CENTER DRIVE ELLIS BLDG. I SHITE 220												I ARC	r+(	19	), 19	19	2 _{PAG}	E	OF_		
ADDRESS:	71114	111116 11453	= = 1	e Drive etc	13 8	UDG.		16 22		_ } -	reg f	ROJE	СТ	#:	1	9	9/	<u> 78 - /</u>	4/		· <del></del>	
PHONE: (90	4)	656-	549	8FAX:	(904	1.) 6	156-	740	3_													
CLIENT PROJE	CT # : <u>-</u>	CTO O	027/7	510)PROJECT M	ANAGE	R: _ <i>L</i>	AUL	Culli	e au	COLLECTOR: DATE OF COLLECTION: 3/15											19/9	
Sample Number	Depth	Time	Sample Type	Container Type	AMA YE		2 10 10 10 10 10 10 10 10 10 10 10 10 10		0   0   0   0   0   0   0   0   0   0		/ /-	7 /	6/						FIELD I		dumber	Laboratory Note Mumber
G300 - 5B06	5-7	111110	Soil	1-402.	7-7-		77		7					1	f				111101	10123		7 - 2
6300 - 5800 25 - 0507 6300 - 5800 6300 - 5800 6300 - 5800 55 - 0406 6300 - 5800 6300 - 5800 6300 - 5800 6300 - 5800 6300 - 5800 6300 - 5800 6300 - 5800 6300 - 5800 6300 - 5800	10-12		1120	i —	1		11	1-1-				1-1			$\top$							
61300 - 5807	4-6'		Soll					-														
630 - 58074	12-14		1170					V														
61300 - 5808 55 - 0507	5-7		5011	1 - 402.				2														
613,0-58090	1012		1120	2 - VOAS				~														
(320-4000 55-0607 (330-5869	6-71		Sou	1-402.				-														
630-5809 GW-1011 GB0-5810	10-11		420	240757				<b>1</b>														
45-0507	5-71		541.	1-402				4														
6300-5810 6W-1011	1011		1/20	2-V=A=				1		_										<del></del>		
									_	_ ':												
4						<u> </u>		_ _ _												11 12		
,										_				_ _	$\perp$						_	_
					_ _				_		-	_		_ _	_							
							<u> </u>	_	_	_		_		_							_	_
					<u> </u>										_							
			<u> </u>															<del></del>		<del></del>		
RELINQUISHED BY		ite)	DATE/TI	// .	,	-		ATEITIM				SAMP					}	LAB	ORATOR	Y NOTES:		
RELINQUISHED BY (Signature) DATE/TIME HECETYED BY (Signature) DATE/TIME												MBER CUSTO					1-	-				;
										CHAIN OF CUSTODY SEALS Y/N/NA SEALS INTACT? Y/N/NA							7					
SAMPLE DISPOSAL INSTRUCTIONS															COLI	D				1 S.		i
												RECEIVED GOOD COND./COLD NOTES:										



# TRANSGLOBAL SURVINONMENTAL GEOCHEMISTRY,

# CHAIN-OF-CUSTODY RECORD P.O. #:_____

												. /															
CLIENT: BLO	י עטוו	= Ro	07	ENVIOUNALENT	142	<del></del>	• • •	* * * * * * *		- <del> </del>			D/	ATE:	14	LAR.	cH	20	<u>'</u>	199	27	_ PAGE	=(	<u>′                                    </u>	OF	,	
ADDRESS:_/3/	1 Cxel	CHIWE	: (En	ner Dewe	EU	1.15 1.15	PLU	11.4500 1 <u>4.</u> 1	19 S	1171	- - 21	? <u>0</u>	TE	G P	ROJI	ECT	· #:		Ĺ	- 1	7	178-	A1				
PHONE: 6	24) 1.	66-	5498	FAX: <u>(</u>	190	1)	60	<u> 560 -</u>	14	23														r, 1	56		
	•			(40) PROJECT M		,					<u>1</u>		ŀ		СТОР										TE OF ECTION	3/2	K)
	T	T	T	T							7	Z /;	٠.,		-,-	6/	//		7		<del>-</del>	77	7				
	1				1,	10/10/ 10/10/ 10/10/		20 84 70 C		158							//	/s/	//	//	//	///	/			Total Number Of Containers	atory .
			Sample	,	10 July 1	18/4	80/k	3/10	*\\{*\\\{*\\\\\\\\\\\\\\\\\\\\\\\\\	3/8	)/s/	\\$\\ \\$\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\di_{\di}{\di}		<i>"</i>		アノ	//	//	//	//			1	So E	log 1
Sample Number	Depth	Time	Туре	Container Type	77	2/20/	15/0	<u>5°/14</u>	<u> </u>	(8)/	^Q /Q	4/6	<u> </u>	<u> /6/</u>	<u>^</u> }}	<u>}/v</u>	5/_		<u>L</u>				FIELD	NOTES		<u> </u>	ים. ים
G300-5811	15-71		Soil	1- A-02	<u>.</u>		_								_					_	_						]
630-3B11 GW-1012	1012		1170	2 - NOAK,					_   _											1							
(ひろののこぶの)を	5.7		Sail	1-402.	1.					4_																	
5 - 0507 6368 - 4913 55 - 0507	5-7		SOIL	1-402.					4										$\Box$	$\Box$							
مرازد مرازد المرازد مرازد	6.7		رية المنطقة	1.00%			$\top$	$\prod$	L			П			1				$\top$	$\neg$	1						
67.0 - 5013	10-12		1170	2. 4045			1	11	1	+	1-1		1	1	1			$\neg$	1	1	7	<del></del>					ļ
JE 14.10 13.17	10-12	[ <del></del> -	1120	2. VOAS	1-1	$\Box$	+	++	- L			$\vdash$		$\top$	+	$\vdash$	$\vdash$	$\exists$	十	$\top$	$\top$						-
135 601A			1/20	2-4005	+	-	-	+++			+	-	-	+	+-	<del>                                     </del>	$\vdash$	+	+	+	+						<del> </del>
620-6315	1017		<del>                                     </del>	<del> </del>	+-+		-	+	- L	<del>-i</del>	+			+	-		<del>  </del>		+	+	+		<del></del>			-	<del> </del>
6300-5015	6-7'		5012	1 - AUZ	-	$\vdash$		+	+-	+-	-	<del>     </del>	+				<del>                                     </del>	$\dashv$	+	+	+	<del></del>	<del>,</del>	<del></del>			<del> </del>
6300-5015	10-12		110	2-0045		<del></del>	+-	++	-	+	+	$\vdash$								-	+			<del></del>			<u> </u>
			ļ	<del> </del>	1			+-+		<del> </del>			+				$\sqcup$			_	4			<del></del>			<u> </u>
			<del>-</del>	<u> </u>	1-1	,		1-1		4_	11		_	+	4-4		<b> </b>	$\dashv$	-	_	+						
							<u> </u>	11	_ _	1_		$\sqcup$	-		$\perp \downarrow$	<u> </u>		_	_	_	4						
		ļ <u></u>	l				'	$\coprod$		_				$\perp$		Ш		_			$\perp$			<del></del>			l
				<u> </u>			'								1			_	$\perp$								
		·		 																							
					$\prod$		石2'								$\lceil \rceil$					$\top$	$\top$	15					
					1		7													$\neg$	1			· <del></del>			
RELINQUISHED BY			DATE/TI		BY	13/1994			DATEN					s	AMP	LE	REC	EIP	T	T	/	LABC	PATOF	RY NOTES			
AELINQUISHED BY	- le		-	(Man	4	fle	ue	17	3/20/	9:	2	TO	TAL	NUM	IB <u>ER</u>	OF	COI	NTA	INE	RS	_	1		•• ••= .	<b>,</b> .		
RELINQUISHED BY	(Signatur	re)	DATE/TI	IME PRÉCEIVED	BY	(Signa	ture)		DATE	TIME	Ē	СН	IAIN	OF C	USTO	ODY	SE	ALS	Y/N/	NA		1					
										SEALS INTACT? Y/N/NA																	
	SAMPLE DISPOSAL INSTRUCTIONS												<del></del>	'ED C	300[	<u>) CC</u>	<u>ONC</u>	./CC	)LD			]			•		
(2.1	TIE.											RECEIVED GOOD COND./COLD NOTES:															

#### **APPENDIX J**

#### **SOIL LABORATORY DATA SHEETS**



## Technical Report for

Brown & Root Environmental

Site G300 CTO 0027

7540

Accutest Job Number: F581

Report to:

C/O Paul Calligan
Brown & Root Environmental
1311 Executive Center Dr. Ste: 220
Tallahassee, FL 32301

ATTN: Arnold Lamb - QA Officer

Total number of pages in report: 26

Harry Behzadi, Ph.D. Laboratory Director

Results relate only to the items tested.

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories.



## Sample Summary

Brown & Root Environmental

Date: Job No: 05/09/97 F581

Site G300 CTO 0027 Project No: 7540

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
F581-1	04/23/97	16:00 GG	04/25/97	so	Soil	300-SB01-O6O7
F581-2	04/23/97	16:20 GG	04/25/97	AQ	Field Blank Water	300-SB01-0607B
F581-3	04/23/97	16:45 GG	04/25/97	so	Soil	300-SB-05-0607
F581-4	04/23/97	17:00 GG	04/25/97	so	Soil	300-SB-04-0607
F581-5	04/17/97	16:00 GG	04/25/97	AQ	Trip Blank Water	TRIP BLANK



Page 1 of 1

Client Sample ID: 300-SB01-O607

Lab Sample ID: Matrix:

F581-1

Method:

SO - Soil **EPA 8100** 

Project:

Site G300 CTO 0027

Date Sampled: 04/23/97

Date Received: 04/25/97

Percent Solids: 97.7

	_	 	 

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	I01473.D	1	04/28/97	NF	04/28/97	OP85	GIJ69
Run #2							

#### **BN PAH List**

CAS No.	Compound	Result	RDL	Units Q
83-32-9	Acenaphthene	ND	340	ug/kg
208-96-8	Acenaphthylene	ND	340	ug/kg
120-12-7	Anthracene	ND	340	ug/kg
56-55-3	Benzo(a)anthracene	ND	340	ug/kg
50-32-8	Benzo(a)pyrene	ND	340	ug/kg
205-99-2	Benzo(b)fluoranthene	ND	340	ug/kg
191-24-2	Benzo(g,h,i)perylene	ND	340	ug/kg
207-08-9	Benzo(k)fluoranthene	ND	340	ug/kg
218-01-9	Chrysene	ND	340	ug/kg
53-70-3	Dibenzo(a,h)anthracene	ND	340	ug/kg
206-44-0	Fluoranthene	ND	340	ug/kg
86-73-7	Fluorene	ND	340	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene	ND	340	ug/kg
91-20-3	Naphthalene	ND	340	ug/kg
90-12-0	1-Methylnaphthalene	ND	340	ug/kg
91-57-6	2-Methylnaphthalene	ND	340	ug/kg
85-01-8	Phenanthrene	ND	340	ug/kg
129-00-0	Pyrene	ND	340	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
321-60-8	2-Fluorobiphenyl	65%		35-120%
84-15-1	o-Terphenyl	74%		35-120%

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank



Page 1 of 1

Client Sample ID: 300-SB01-O6O7

Lab Sample ID:

F581-1

Matrix: Method: SO - Soil FLORIDA-PRO

Project:

Date Sampled: 04/23/97

Date Received: 04/25/97 Percent Solids: 97.7

Site G300 CTO 0027

DF

1

Ву Prep Date Prep Batch **Analytical Batch** NF 05/01/97

Run #1 Run #2

CAS No.

Analyzed

05/02/97

OP74

GIJ73

Compound

File ID

I01578.D

Result

RDL

Units Q

TPH (C8-C40)

11.0 8.5 mg/kg

CAS No.

Surrogate Recoveries

Run#1

Run#2

Limits

84-15-1

o-Terphenyl

66%

40-140%

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank



By

ΑW

Page 1 of 2

Client Sample ID: 300-SB01-O6O7

File ID

EF002016.D

Lab Sample ID:

F581-1

Matrix: Method: SO - Soil SW846 8010/8020

Project:

Site G300 CTO 0027

DF

1

Analyzed

04/25/97

Date Sampled: 04/23/97

Date Received: 04/25/97

Percent Solids: 97.7

Prep Date n/a

Prep Batch n/a

**Analytical Batch** GEF51

Run #1 Run #2

#### **VOA PPL List**

CAS No.	Compound	Result	RDL	Units Q
71-43-2	Benzene	ND	1.0	ug/kg
75-25-2	Bromoform	ND	1.0	ug/kg
75-27-4	Bromodichloromethane	ND	1.0~	ug/kg
74-83-9	Bromomethane	ND	1.0	ug/kg
56-23-5	Carbon tetrachloride	ND	1.0	ug/kg
108-90-7	Chlorobenzene	ND	1.0	ug/kg
75-00-3	Chloroethane	ND	1.0	ug/kg
67-66-3	Chloroform	ND	1.0	ug/kg
74-87-3	Chloromethane	ND	1.0	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	ug/kg
124-48-1	Dibromochloromethane	ND	1.0	ug/kg
75-71-8	Dichlorodifluoromethane	ND	1.0	ug/kg
75-34-3	1,1-Dichloroethane	ND	1.0	ug/kg
107-06-2	1,2-Dichloroethane	ND	1.0	ug/kg
75-35-4	1,1-Dichloroethene	ND	1.0	ug/kg
156-60-5	trans-1,2-Dichloroethene	ND	1.0	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	ug/kg
78-87 <b>-</b> 5	1,2-Dichloropropane	ND	1.0	ug/kg
100-41-4	Ethylbenzene	ND	1.0	ug/kg
75-09-2	Methylene chloride	ND	5.0	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	ug/kg
127-18-4	Tetrachloroethene	ND	1.0	ug/kg
108-88-3	Toluene	ND	1.0	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	1.0	ug/kg
79-01-6	Trichloroethene	ND	1.0	ug/kg
75-69-4	Trichlorofluoromethane	ND	1.0	ug/kg
75-01-4	Vinyl chloride	ND	1.0	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	1.0	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	1.0	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	1.0	ug/kg
1330-20-7	Xylenes (total)	ND	3.0	ug/kg
156-69-4	cis-1,2-Dichloroethene	ND	1.0	ug/kg

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank



Page 2 of 2

Client Sample ID: 300-SB01-O6O7

Lab Sample ID: Matrix:

F581-1

SO - Soil SW846 8010/8020

Method: Project:

Site G300 CTO 0027

Date Sampled: 04/23/97

Date Received: 04/25/97

Percent Solids: 97.7

Run #1

File ID EF002016.D DF 1

Analyzed 04/25/97

By AW Prep Date n/a

Prep Batch

**Analytical Batch** 

GEF51 n/a

Run #2

**VOA PPL List** 

CAS No.

Surrogate Recoveries

Run#1

Run#2

Limits

460-00-4

4-Bromofluorobenzene

73%

50-150%

B = Indicates that analyte is found in associated method blank

N = Indicates presumptive evidence of a compound



Page 1 of 1

Client Sample ID: 300-SB01-O6O7

Lab Sample ID: Matrix:

F581-1

SO - Soil

Date Sampled: 04/23/97

Date Received: 04/25/97 Percent Solids: 97.7

Project:

Site G300 CTO 0027

Metals Analysis

Analyte

Result

RDL Units DF

Prep

Analyzed By

Method

Lead

26.6

3.1

mg/kg 10

05/05/97 05/09/97 лк

SW846 7421



File ID

I01451.D

### Report of Analysis

NF

Page 1 of 1

Client Sample ID: 300-SB01-0607B

Lab Sample ID:

F581-2

Matrix:

AQ - Field Blank Water

Method:

**EPA 8100** 

Project:

Site G300 CTO 0027

DF

1

Analyzed

04/25/97

Date Sampled: 04/23/97

04/25/97

**GU68** 

Date Received: 04/25/97

Percent Solids: n/a

By Prep Date Prep Batch **Analytical Batch** 

OP83

Run #1

Run #2

**BN PAH List** 

CAS No.	Compound	Result	RDL	Units Q
83-32-9	Acenaphthene	ND	10	ug/l
208-96-8	Acenaphthylene	ND	10	ug/1
120-12-7	Anthracene	ND	10 -	ug/l
56-55-3	Benzo(a)anthracene	ND	10	ug/l
50-32-8	Benzo(a)pyrene	ND	10	ug/l
205-99-2	Benzo(b)fluoranthene	ND	10	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	10	ug/l
207-08-9	Benzo(k)fluoranthene	ND	10	ug/l
218-01-9	Chrysene	ND	10	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	10	ug/l
206-44-0	Fluoranthene	ND	10	ug/l
86-73-7	Fluorene	ND	10	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	10	ug/l
91-20-3	Naphthalene	ND	<b>10</b>	ug/l
90-12-0	1-Methylnaphthalene	ND	10	ug/l
91-57-6	2-Methylnaphthalene	ND	10	ug/l
85-01-8	Phenanthrene	ND	10	ug/l
129-00-0	Pyrene	ND	10	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
321-60-8	2-Fluorobiphenyl	78%		26-116%
84-15-1	o-Terphenyl	94%		26-125 %

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank

N = Indicates presumptive evidence of a compound



Page 1 of 1

Client Sample ID: 300-SB01-0607B

Lab Sample ID:

F581-2

Matrix:

AQ - Field Blank Water

Method: Project:

FLORIDA-PRO

Site G300 CTO 0027

Date Sampled: 04/23/97

Date Received: 04/25/97

Percent Solids: n/a

File ID DF Prep Date Prep Batch **Analytical Batch** Analyzed By 04/30/97 **OP89** GIJ73 Run #1 I01594.D 1 05/02/97 NF

Run #2

CAS No. Compound Result

RDL

Units Q

TPH (C8-C40)

ND 0.50

mg/l

CAS No. Surrogate Recoveries Run#1

Run#2 Limits

84-15-1

o-Terphenyl

69 %

40-140%

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank



Page 1 of 2

Client Sample ID: 300-SB01-0607B

Lab Sample ID:

F581-2

Matrix:

AQ - Field Blank Water

Method:

EPA 8010/8020

Project:

Site G300 CTO 0027

Date Sampled: 04/23/97

Date Received: 04/25/97

Percent Solids: n/a

File ID
Run #1 EF002015.D

**DF** 

Analyzed By 04/25/97 AW

Prep Date n/a

Prep Batch

Analytical Batch

n/a GEF50

Run #2

#### **VOA PPL List**

CAS No.	Compound	Result	RDL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-25-2	Bromoform	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
74-83-9	Bromomethane	ND	1.0	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	ug/l
108-90-7	Chlorobenzene	ND	1.0	ug/l
75-00-3	Chloroethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
74-87 <b>-</b> 3	Chloromethane	ND	1.0	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	ug/l
124-48-1	Dibromochloromethane	ND	1.0	ug/l
75-71-8	Dichlorodifluoromethane	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	2.5	1.0	ug/I
75-35-4	1,1-Dichloroethene	ND	1.0	ug/l
156 <b>-6</b> 0-5	trans-1,2-Dichloroethene	ND	1.0	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	ug/l
100-41-4	Ethylbenzene	ND	1.0	ug/l
75-09-2	Methylene chloride	ND	5.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	ug/l
79-01-6	Trichloroethene	ND	1.0	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l
75-01-4	Vinyl chloride	ND	1.0	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	ug/1
106-46-7	1,4-Dichlorobenzene	ND	1.0	ug/I
95-50-1	1,2-Dichlorobenzene	ND	1.0	ug/l
1330-20-7	Xylenes (total)	ND	3.0	ug/l
156-69-4	cis-1,2-Dichloroethene	ND	1.0	ug/l
540-59-0	1,2-Dichloroethene (total)	ND	2.0	ug/l

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank



Page 2 of 2

Client Sample ID: 300-SB01-0607B

Lab Sample ID:

F581-2

Matrix:

AQ - Field Blank Water

Method: Project:

EPA 8010/8020 Site G300 CTO 0027 Date Sampled: 04/23/97

Date Received: 04/25/97

Percent Solids: n/a

File ID

EF002015.D

DF

Analyzed 04/25/97

By AW Prep Date n/a

Prep Batch

**Analytical Batch** 

n/a GEF50

Run #1 Run #2

**VOA PPL List** 

Surrogate Recoveries

Run#1

Run#2

Limits

460-00-4

CAS No.

4-Bromofluorobenzene

100%

75-125%



Page 1 of 1

Client Sample ID: 300-SB01-0607B

Lab Sample ID:

F581-2

Matrix:

AQ - Field Blank Water

Date Sampled: 04/23/97

Date Received: 04/25/97 Percent Solids: n/a

Project:

Site G300 CTO 0027

Metals Analysis

Analyte

Result

RDL Units DF

Prep

Analyzed By

Method

Lead

<0.0030 0.0030 mg/l

05/02/97 05/08/97 лк

EPA 239.2



Page 1 of 1

Client Sample ID: 300-SB-05-0607

Lab Sample ID:

F581-3

Matrix: Method: SO - Soil **EPA 8100** 

Project:

Site G300 CTO 0027

Date Sampled: 04/23/97

Date Received: 04/25/97

Percent Solids: 93.2

Run #1 a Run #2

File ID I01477.D DF 20

Analyzed 04/29/97

By NF Prep Date 04/28/97

Prep Batch OP85

Analytical Batch

GIJ69

**BN PAH List** 

CAS No.	Compound	Result	RDL	Units Q
83-32-9	Acenaphthene	ND	7200	ug/kg
208-96-8	Acenaphthylene	ND	7200	ug/kg
120-12-7	Anthracene	ND	7200	ug/kg
56-55-3	Benzo(a)anthracene	ND	7200	ug/kg
50-32-8	Benzo(a)pyrene	ND	7200	ug/kg
205-99-2	Benzo(b)fluoranthene	ND	7200	ug/kg
191-24-2	Benzo(g,h,i)perylene	ND	7200	ug/kg
207-08-9	Benzo(k)fluoranthene	ND	7200	ug/kg
218-01-9	Chrysene	ND	7200	ug/kg
53-70-3	Dibenzo(a,h)anthracene	ND	7200	ug/kg
206-44-0	Fluoranthene	ND	7200	ug/kg
86-73-7	Fluorene	ND	7200	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene	ND	7200	ug/kg
91-20-3	Naphthalene	ND	7200	ug/kg
90-12-0 .	1-Methylnaphthalene	ND	7200	ug/kg
91-57-6	2-Methylnaphthalene	ND	7200	ug/kg
85-01-8	Phenanthrene	ND	7200	ug/kg
129-00-0	Pyrene	ND	7200	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
321-60-8	2-Fluorobiphenyl	0% b		35-120%
84-15-1	o-Terphenyl	0% b		35-120%

⁽a) Elevated detection limit due to matrix inteference.

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank

⁽b) Outside control limits due to dilution.



Page 1 of 1

Client Sample ID: 300-SB-05-0607

Lab Sample ID:

F581-3

Matrix:

SO - Soil

Method: Project:

FLORIDA-PRO

Site G300 CTO 0027

Date Sampled: 04/23/97

Date Received: 04/25/97

Percent Solids: 93.2

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	I01579.D	40	05/02/97	NF.	05/01/97	OP74	GIJ73
D #2	•						

Run #2

Compound

Result

RDL

Units Q

CAS No.

TPH (C8-C40)

2020

360

mg/kg

CAS No.

Surrogate Recoveries

Run#1

Run# 2

Limits

84-15-1

o-Terphenyl

0% *

40-140%

(a) Outside control limits due to dilution.

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank



File ID

EF002019.D

### Report of Analysis

Вy

ΑW

Page 1 of 2

Client Sample ID: 300-SB-05-0607

Lab Sample ID:

F581-3

Matrix: Method: SO - Soil

SW846 8010/8020

Date Sampled: 04/23/97 Date Received: 04/25/97

Project:

Site G300 CTO 0027

DF

10

Analyzed

04/25/97

Percent Solids: 93.2

n/a

Prep Batch **Analytical Batch** 

Prep Date n/a GEF51

Run #1 * Run #2

### **VOA PPL List**

CAS No.	Compound	Result	RDL	Units Q
71-43-2	Benzene	ND	11	ug/kg
75-25-2	Bromoform	ND	11	ug/kg
75-27-4	Bromodichloromethane	ND	11 🗠	ug/kg
74-83-9	Bromomethane	ND	11	ug/kg
56-23-5	Carbon tetrachloride	ND	11	ug/kg
108- <del>9</del> 0-7	Chlorobenzene	ND	11	ug/kg
75-00-3	Chloroethane	ND	11	ug/kg
67-66-3	Chloroform	ND	11	ug/kg
74-87-3	Chloromethane	ND	11	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	11	ug/kg
124-48-1	Dibromochloromethane	ND	11	ug/kg
75-71-8	Dichlorodifluoromethane	ND	11	ug/kg
75-34-3	1,1-Dichloroethane	ND	11	ug/kg
107-06-2	1,2-Dichloroethane	ND	11	ug/kg
.7 <b>5-</b> 35-4	1,1-Dichloroethene	ND	11	ug/kg
156-60-5	trans-1,2-Dichloroethene	ND	11	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	11	ug/kg
78-87-5	1,2-Dichloropropane	ND	11	ug/kg
100-41-4	Ethylbenzene ^b	37.9	11	ug/kg
75-09-2	Methylene chloride	ND	<b>55</b>	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	11	ug/kg
127-18-4	Tetrachloroethene	ND	11	ug/kg
108-88-3	Toluene	ND	11	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	11	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	11	ug/kg
79-01-6	Trichloroethene	ND	11	ug/kg
75-69-4	Trichlorofluoromethane	ND	11	ug/kg
75-01-4	Vinyl chloride	ND	11	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	11	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	11	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	11	ug/kg
1330-20-7	Xylenes (total) b	159	33	ug/kg
156-69-4	cis-1,2-Dichloroethene	ND	11	ug/kg

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank



Page 2 of 2

Client Sample ID: 300-SB-05-0607

Lab Sample ID:

F581-3

Matrix:

SO - Soil

SW846 8010/8020

Method:

Date Sampled: 04/23/97 Date Received: 04/25/97

Percent Solids: 93.2

Project:

Site G300 CTO 0027

Run #1 a

File ID EF002019.D DF 10

Analyzed 04/25/97

By AW **Prep Date** n/a

Prep Batch

**Analytical Batch** 

n/a GEF51

Run #2

**VOA PPL List** 

CAS No.

Surrogate Recoveries

Run#1

Run#2

Limits

460-00-4

4-Bromofluorobenzene

130%

50-150%

- (a) Dilution required due to matrix interference.
- (b) Confirmed by reanalysis on second column

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank



Page 1 of 1

Client Sample ID: 300-SB-05-0607

Lab Sample ID: Matrix:

F581-3

SO - Soil

Date Sampled: 04/23/97

Date Received: 04/25/97

Percent Solids: 93.2

Project:

Site G300 CTO 0027

Metals Analysis

Analyte

Result

RDL

Units DF Prep

Analyzed By Method

Lead

2.6 0.32

mg/kg 1

05/05/97 05/06/97 лк

SW846 7421



File ID

I01559.D

## Report of Analysis

Page 1 of 1

Client Sample ID: 300-SB-04-0607

Lab Sample ID:

F581-4

Matrix: Method: SO - Soil

**EPA 8100** 

Date Sampled: 04/23/97 Date Received: 04/25/97

Percent Solids: 92.4

Project:

Site G300 CTO 0027

DF

80

By

NF

Analyzed

05/01/97

Prep Date 04/28/97

Prep Batch **OP85** 

**Analytical Batch** 

GIJ72

Run #1 a Run #2

### **BN PAH List**

CAS No.	Compound	Result	RDL	Units Q
83-32-9	Acenaphthene	ND	30000	ug/kg
208-96-8	Acenaphthylene	ND	30000	ug/kg
120-12-7	Anthracene	ND	30000	ug/kg
56-55-3	Benzo(a)anthracene	ND	30000	ug/kg
50-32-8	Benzo(a)pyrene	ND	30000	ug/kg
205-99-2	Benzo(b)fluoranthene	ND	30000	ug/kg
191-24-2	Benzo(g,h,i)perylene	ND	30000	ug/kg
207-08-9	Benzo(k)fluoranthene	ND	30000	ug/kg
218-01-9	Chrysene	ND	30000	ug/kg
53-70-3	Dibenzo(a,h)anthracene	ND	30000	ug/kg
206-44-0	Fluoranthene	ND	30000	ug/kg
86-73-7	Fluorene	ND	30000	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene	ND	30000	ug/kg
91-20-3	Naphthalene	19500	30000	ug/kg J
90-12-0	1-Methylnaphthalene	55600	30000	ug/kg
91-57-6	2-Methylnaphthalene	63300	30000	ug/kg
85-01-8	Phenanthrene	ND	30000	ug/kg
129-00-0	Pyrene	ND	30000	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
321-60-8	2-Fluorobiphenyl	0% b		35-120%
84-15-1	o-Terphenyl	0% b		35-120%

⁽a) All hits confirmed by dual column analysis.

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank

⁽b) Outside control limits due to dilution.



Page 1 of 1

Client Sample ID: 300-SB-04-0607

Lab Sample ID:

F581-4

Matrix:

Project:

SO - Soil

Method:

FLORIDA-PRO

Site G300 CTO 0027

Date Sampled: 04/23/97

Date Received: 04/25/97 Percent Solids: 92.4

File ID DF Analyzed By **Prep Date** Prep Batch **Analytical Batch** Run#1 I01580.D 100 05/02/97 NF

Run #2

05/01/97

OP74

GU73

CAS No.

Compound

Result

RDL

Units Q

TPH (C8-C40)

930

mg/kg

CAS No.

Surrogate Recoveries

Run#1

5390

Run#2

Limits

84-15-1

o-Terphenyl

0%

40-140%

(a) Outside control limits due to dilution.

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank



Page 1 of 2

Client Sample ID: 300-SB-04-0607

Lab Sample ID:

F581-4

Matrix:

SO - Soil

Method: Project:

SW846 8010/8020 Site G300 CTO 0027

Date Sampled: 04/23/97 Date Received: 04/25/97

Percent Solids: 92.4

Prep Batch **Analytical Batch** 

Run#1ª

File ID EF002020.D DF 50

Analyzed 04/25/97

By ΑW **Prep Date** n/a

n/a

GEF51

Run #2

### **VOA PPL List**

CAS No.	Compound	Result	RDL	Units Q			
71-43-2	Benzene	ND	55	ug/kg			
75-25-2	Bromoform	ND	<b>55</b>	ug/kg			
75-27-4	Bromodichloromethane	ND	<b>55</b>	ug/kg			
74-83-9	Bromomethane	ND	<b>55</b>	ug/kg			
56-23-5	Carbon tetrachloride	ND	<b>55</b>	ug/kg			
108-90-7	Chlorobenzene	ND	<b>55</b>	ug/kg			
75-00-3	Chloroethane	ND	<b>55</b>	ug/kg			
67-66-3	Chloroform	ND	<b>55</b>	ug/kg			
74-87-3	Chloromethane	ND	<b>55</b>	ug/kg			
10061-01-5	cis-1,3-Dichloropropene	ND	55	ug/kg			
124-48-1	Dibromochloromethane	ND	55	ug/kg			
75-71-8	Dichlorodifluoromethane	ND	<b>55</b>	ug/kg			
75-34-3	1,1-Dichloroethane	ND	<b>55</b>	ug/kg			
107-06-2	1,2-Dichloroethane	ND	55	ug/kg			
75-35-4	1.1-Dichloroethene	ND	<b>55</b>	ug/kg			
156-60-5	trans-1,2-Dichloroethene	ND	<b>55</b>	ug/kg			
10061-02-6	trans-1,3-Dichloropropene	ND	<b>55</b>	ug/kg			
78-87-5	1,2-Dichloropropane	ND	<b>55</b>	ug/kg			
100-41-4	Ethylbenzene ^b	1260	<b>55</b>	ug/kg			
75-09-2	Methylene chloride	ND	280	ug/kg			
79-34-5	1,1,2,2-Tetrachloroethane	ND	<b>55</b>	ug/kg			
127-18-4	Tetrachloroethene	ND	<b>55</b>	ug/kg			
108-88-3	Toluene	ND	<b>55</b>	ug/kg			
71-55-6	1,1,1-Trichloroethane	ND	<b>55</b>	ug/kg			
79-00-5	1,1,2-Trichloroethane	ND	55	ug/kg			
79-01-6	Trichloroethene	ND	<b>55</b>	ug/kg			
75-69-4	Trichlorofluoromethane	ND	55	ug/kg			
75-01-4	Vinyl chloride	ND	55	ug/kg			
541-73-1	1,3-Dichlorobenzene	ND	55	ug/kg			
106-46-7	1,4-Dichlorobenzene	ND	55	ug/kg			
95-50-1	1,2-Dichlorobenzene	ND	55	ug/kg			
1330-20-7	Xylenes (total) b	4320	160	ug/kg			
156-69-4	cis-1,2-Dichloroethene	ND	55	ug/kg			

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank



Page 2 of 2

Client Sample ID: 300-SB-04-0607

Lab Sample ID:

F581-4

Matrix:

SO - Soil

Method: Project:

SW846 8010/8020

Site G300 CTO 0027

Date Sampled: 04/23/97 Date Received: 04/25/97

Percent Solids: 92.4

Run #1 a

File ID EF002020.D DF 50

Analyzed 04/25/97

Вy AW Prep Date n/a

Prep Batch

Analytical Batch

GEF51

Run #2

**VOA PPL List** 

CAS No. Surrogate Recoveries Run#1

Run#2

Limits

460-00-4

4-Bromofluorobenzene

50-150%

- (a) Dilution required due to matrix interference.
- (b) Confirmed by reanalysis on second column

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank



Page 1 of 1

Client Sample ID: 300-SB-04-0607

Lab Sample ID:

F581-4

Date Sampled: 04/23/97

Matrix:

SO - Soil

Date Received: 04/25/97

Percent Solids: 92.4

Project:

Site G300 CTO 0027

### **Metals Analysis**

**RDL** Units DF Analyzed By Method Analyte Result Prep

Lead

0.32

mg/kg 1

05/05/97 05/06/97 лк

SW846 7421

Page 1 of 2

Client Sample ID: TRIP BLANK

Lab Sample ID:

F581-5

Matrix: Method: Project:

EPA 601/602

AQ - Trip Blank Water

Site G300 CTO 0027

Date Sampled: 04/17/97

Date Received: 04/25/97

Percent Solids: n/a

File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch** EF002014.D 04/25/97 ΑW n/a GEF50 Run #1 1 n/a

Run #2

### **VOA PPL List**

CAS No.	Compound	Result	RDL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-25-2	Bromoform	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
74-83-9	Bromomethane	ND	1.0	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	ug/l
108-90-7	Chlorobenzene	ND	1.0	ug/l
75-00-3	Chloroethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
74-87-3	Chloromethane	ND	1.0	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	ug/l
124-48-1	Dibromochloromethane	ND	1.0	ug/l
75-71-8	Dichlorodifluoromethane	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	2.2	1.0	ug/l
75-35-4	1,1-Dichloroethene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethene	ND	1.0	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	ug/l
100-41-4	Ethylbenzene	ND	1.0	ug/l
75-09-2	Methylene chloride	ND	<b>5.0</b>	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	ug/l
79-01-6	Trichloroethene	ND	1.0	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	ug/I
75-01-4	Vinyl chloride	ND	1.0	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	ug/l
1330-20-7	Xylenes (total)	ND	3.0	ug/l
156-69-4	cis-1,2-Dichloroethene	ND	1.0	ug/l
540-59-0	1,2-Dichloroethene (total)	ND	2.0	ug/l

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank



File ID

EF002014.D

## Report of Analysis

By

AW

Page 2 of 2

Client Sample ID: TRIP BLANK

Lab Sample ID:

F581-5

Matrix:

AQ - Trip Blank Water

DF

Method:

EPA 601/602

Project:

Site G300 CTO 0027

Date Sampled: 04/17/97 Date Received: 04/25/97

Percent Solids: n/a

**Analytical Batch** 

Prep Batch n/a GEF50

Run #1 Run #2

**VOA PPL List** 

CAS No. Surrogate Recoveries Run#1

Analyzed

04/25/97

Run#2

Limits

**Prep Date** 

n/a

460-00-4

4-Bromofluorobenzene

100%

75-125%

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank

:	De	erfield	convirons  Court Orive  Beach, Flor  FAX: \$\text{POS}\$ 570	<u>Suik 200</u> 1da 33441	PROJEC BRE PR	ANAGER: _ T NAME: _ OJECT NO D.: _204/	<u>5:4</u> .: <u>7</u>	54	<u>G1 3</u> 0	്ഗ	. COI	<i>СТС</i> DE: _	- -	27	-	ъ :НІРРЕ /}:		Son. Orlando, Harry ! (LABORATO)	Sen.	IE. 、	:	
			RECORD									OR	ATC	DRY	ANAI					<u> </u>	-	
SAMPLED E	Y (PRIN	r): John	a Webster	Sfull 1	Tord	ode e	SAM!	PΕ	MATRIX	PRES	; / ¿	1/3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\ <del>\</del> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7,		//	გ <i>წ</i> / 🗆 24 HI	R. <b>□48</b>	HR. □72	T 🗆 f	1
LAB NO.	DATE	TIME	SAMI	PLE IDENT	IFICATION	1	COMP	GRAB	M.A	PARAME			20	77.10 01.01	<b>/</b>	//	NUMBES	RESULTS		MENT		
F581-1			300-50						5	1	2	2					6	5pl.	. Ice	4		
2		<del> </del>	300-5B						<u>w</u>			3	1			_	5		<del></del>			
-3			300-SB			<del></del>			<u>5</u>	1	12	2					6					
-3 -4 -5	1.7.	1600	300-500 Trip Blan		<u>/</u>			{	<u>ر</u> س		0	0	1	2	+		6					
	171797	1000	1 TO DIAN	71						-	-			0.	1-1		1		<del></del>		<del></del>	
																		NOTE: Sa (Blank) A contained	b rir	sak		6 078
				TOTA		ED 05 (	NON T			-	7	-	-				ลิร					
«ET HOOLZHED E	SY/(SICHATU	PE) (st	CNATURE)  No lo cuole	SEAL I YES N SEAL I YES N SEAL I	NTACT? O N/A	DATE: 4/2 TIME: / 3 DATE:			EMP 2 REC		TILES	SIGNA	(9) TURE)	By (510	MATURE	) E		SEAL INTA YES NO SEAL INTA	N/A CT? N/A	DATE:	722/9	77
SPECIAL	INSTRU	CTION	S:		<del> </del>	) TIME:		7	1	ORA	TOT	XY F	REM.	ARKS	:					TIME.	··· <del>···</del>	
AMPLE CONTAIN	NERS PRECL LABORA	EANED BY:	MANUFACT	urer i	METHOD C	OF SHIPMEN		ed		RECE	IVED	<u>)</u>	ABOR			OF LAI	DING	no.: <u>436</u>	192 No		2 `^94	
PINK-SAMPLERS				<u> </u>					 {	DATE	~~~	1/2	₹ <b>?</b>	179	ПМ	IE:	10!	00	7	:		- 1

# QA/QC Data



By

NF

Page 1 of 1

Client Sample ID: 300-MW01-001

Lab Sample ID:

F582-3

Matrix:

AQ - Ground Water

Method: Project:

EPA 504.1

Site G300 CTO 0027

DF

1

Date Sampled: 04/23/97

Date Received: 04/25/97

Percent Solids: n/a

**Prep Date** Prep Batch Analytical Batch

n/a

n/a GAB66

Run #1 Run #2

Compound

AB01846.D

File ID

Result

Analyzed

04/25/97

RDL Units Q

106-93-4

CAS No.

1,2-Dibromoethane

ND

0.020 ug/l

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank



Page 1 of 1

Client Sample ID: 300-MW01-001

Lab Sample ID:

F582-3

Matrix:

AQ - Ground Water

Date Sampled: 04/23/97

Date Received: 04/25/97 Percent Solids: n/a

Project:

Site G300 CTO 0027

**Metals Analysis** 

Analyte

Result

**RDL** 

Units DF

Prep

Analyzed By

Method

Lead

0.0050

0.0030 mg/l

05/02/97 05/08/97 лк

EPA 239.2



Page 1 of 1

Client Sample ID: 300-MW03-001B

Lab Sample ID:

F582-4

Matrix: Method:

Project:

AQ - Ground Water

File ID

I01449.D

**EPA 8100** 

Site G300 CTO 0027

Date Sampled: 04/23/97

Date Received: 04/25/97

Percent Solids: n/a

Prep Date Prep Batch

Run #1

Run #2

DF 1

Analyzed 04/25/97

Вy NF

04/25/97

**OP83** 

**Analytical Batch** 

GU68

### **BN PAH List**

CAS No.	Compound	Result	RDL	Units Q
83-32-9	Acenaphthene	ND	10	ug/l
208-96-8	Acenaphthylene	ND	10	ug/l
120-12-7	Anthracene	ND	10-	ug/l
56-55-3	Benzo(a)anthracene	ND	10	ug/l
50-32-8	Benzo(a)pyrene	ND	10	ug/l
205-99-2	Benzo(b)fluoranthene	ND	10	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	10	ug/l
207-08-9	Benzo(k)fluoranthene	ND	10	ug/l
218-01-9	Chrysene	ND	10	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	10	ug/l
206-44-0	Fluoranthene	ND	10	ug/l
86-73-7	Fluorene	ND	10	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	10	ug/l
91-20-3	Naphthalene	ND	10	ug/l
90-12-0	i-Methylnaphthalene	ND	10	ug/l
91-57-6	2-Methylnaphthalene	ND	10	ug/l
85-01-8	Phenanthrene	ND	10	ug/l
129-00-0	Pyrene	ND	10	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
321-60-8 84-15-1	2-Fluorobiphenyl o-Terphenyl	85 % 110 %		26-116 % 26-125 %

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank



Page 1 of 1

Client Sample ID: 300-MW03-001B

Lab Sample ID:

F582-4

Matrix:

AQ - Ground Water

Method:

FLORIDA-PRO

Date Sampled: 04/23/97

Date Received: 04/25/97 Percent Solids: n/a

Project:

Site G300 CTO 0027

Run #1

File ID I01593.D DF Analyzed 1 05/02/97

Ву NF Prep Date 04/30/97

Prep Batch **OP89** 

**Analytical Batch** 

GIJ73

Run #2

CAS No.

Compound

Result

RDL Units Q

mg/l

TPH (C8-C40)

ND 0.50

Run#2

CAS No.

Surrogate Recoveries

Run#1

Limits

84-15-1

o-Terphenyl

81%

40-140%

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank



File ID

### Report of Analysis

Page 1 of 2

Client Sample ID: 300-MW03-001B

Lab Sample ID:

F582-4

Matrix: Method: AQ - Ground Water

EPA 601/602

Project:

Site G300 CTO 0027

DF

Date Sampled: 04/23/97

Prep Date

Date Received: 04/25/97 Percent Solids: n/a

Prep Batch **Analytical Batch** 

By EF002009.D 04/25/97 ΑW n/a GEF50 Run #1 n/a

Analyzed

Run #2

### **VOA PPL List**

CAS No.	Compound	Result	RDL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-25-2	Bromoform	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
74-83-9	Bromomethane	ND	1.0	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	ug/l
108-90-7	Chlorobenzene	ND	1.0	ug/l
75-00-3	Chloroethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
74-87-3	Chloromethane	ND	1.0	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	ug/l
124-48-1	Dibromochloromethane	ND	1.0	ug/l
75-71-8	Dichlorodifluoromethane	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	1.4	1.0	ug/l
75-35-4	1,1-Dichloroethene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethene	ND	1.0	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	ug/l
100-41-4	Ethylbenzene	ND	1.0	ug/l
75-09-2	Methylene chloride	ND	5.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	ug/l
79-01-6	Trichloroethene	ND	1.0	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l
75-01-4	Vinyl chloride	ND	1.0	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	ug/l
1330-20-7	Xylenes (total)	ND	3.0	ug/l
156-69-4	cis-1,2-Dichloroethene	ND	1.0	ug/l
540-59-0	1,2-Dichloroethene (total)	ND	2.0	ug/l

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank



Page 2 of 2

Client Sample ID: 300-MW03-001B

Lab Sample ID:

F582-4

Matrix:

AQ - Ground Water

Method:

EPA 601/602

Project:

Site G300 CTO 0027

Date Sampled: 04/23/97 Date Received: 04/25/97

Percent Solids: n/a

Run #1

File ID EF002009.D DF 1

Analyzed 04/25/97

By ΑW Prep Date n/a

**Prep Batch** 

**Analytical Batch** 

GEF50 n/a

Run #2

**VOA PPL List** 

CAS No.

Surrogate Recoveries

Run#1

Run#2

Limits

460-00-4

4-Bromofluorobenzene

106%

75-125%

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank



Page 1 of 1

Client Sample ID: 300-MW03-001B

Lab Sample ID:

F582-4

Matrix: Method: AQ - Ground Water

EPA 504.1

Project:

Site G300 CTO 0027

Date Sampled: 04/23/97

Date Received: 04/25/97

Percent Solids: n/a

File ID DF Analyzed By **Prep Date** Run #1 AB01847.D 04/25/97 n/a

NF

Prep Batch

**Analytical Batch** 

n/a GAB66

CAS No.

Run #2

Compound

Result

RDL Units Q

0.020

106-93-4

1,2-Dibromoethane

ND

ug/l

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank



Page 1 of 1

Client Sample ID: 300-MW03-001B

Lab Sample ID: Matrix:

F582-4

AQ - Ground Water

Date Sampled: 04/23/97

Date Received: 04/25/97 Percent Solids: n/a

Project:

Site G300 CTO 0027

Metals Analysis

Analyte

Result

RDL

Units DF Prep

Analyzed By

Method

Lead

<0.0030 0.0030 mg/l

05/02/97 05/08/97 лк

EPA 239.2



Page 1 of 1

Client Sample ID: 300-MW02-001

Lab Sample ID:

F582-5

Matrix: Method: AQ - Ground Water

**EPA 8100** 

Project:

Site G300 CTO 0027

Date Sampled: 04/23/97

Date Received: 04/25/97 Percent Solids: n/a

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	I01450.D	1	04/25/97	NF	04/25/97	OP83	GU68

Run #2

10

### **BN PAH List**

CAS No.	Compound	Result	RDL	Units Q
83-32-9	Acenaphthene	ND	10	ug/l
208-96-8	Acenaphthylene	ND	10	ug/l
120-12-7	Anthracene	ND	10	ug/l
56-55-3	Benzo(a)anthracene	ND	10	ug/l
50-32-8	Benzo(a)pyrene	ND	10	ug/l
205-99-2	Benzo(b)fluoranthene	ND	10	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	10	ug/l
207-08-9	Benzo(k)fluoranthene	ND	10	ug/l
218-01-9	Chrysene	ND	10	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	10	ug/l
206-44-0	Fluoranthene	ND	10	ug/l
86-73-7	Fluorene	ND	10	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	10	ug/l
91-20-3	Naphthalene	ND	10	ug/l
90-12-0	1-Methylnaphthalene	ND	10	ug/l
91-57 <b>-</b> 6	2-Methylnaphthalene	ND	10	ug/l
85-01-8	Phenanthrene	ND	10	ug/l
129-00-0	Pyrene	ND	10	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
321-60-8 84-15-1	2-Fluorobiphenyl o-Terphenyl	67% 94%		26-116 % 26-125 %

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank



Page 1 of 1

Client Sample ID: 300-MW02-001

Lab Sample ID:

F582-5

Matrix:

AQ - Ground Water

Method:

FLORIDA-PRO

Date Sampled: 04/23/97

Date Received: 04/25/97

Percent Solids: n/a

Project:

Site G300 CTO 0027

Run #1

File ID I01587.D DF 1

Analyzed 05/02/97

Ву NF Prep Date 04/30/97

Prep Batch **OP89** 

**Analytical Batch** 

**GU73** 

Run #2

Result

RDL

Units Q

CAS No.

Compound

TPH (C8-C40)

0.846

0.50

mg/l

CAS No.

Surrogate Recoveries

Run#1

Run# 2

Limits

84-15-1

o-Terphenyi

89%

40-140%

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blan



Page 1 of 2

Client Sample ID: 300-MW02-001

Lab Sample ID: F582-5

Matrix: AQ - Ground Water Method: EPA 601/602

EPA 601/602 Site G300 CTO 0027 **Date Sampled:** 04/23/97 **Date Received:** 04/25/97

Percent Solids: n/a

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch

Run #1 EF002010.D 1 04/25/97 AW n/a n/a GEF50

Run #2

Project:

### **VOA PPL List**

CAS No.	Compound	Result	RDL	Units Q
71-43-2	Benzene a	1.8	1.0	ug/l
75-25-2	Bromoform	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
74-83-9	Bromomethane	ND	1.0	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	ug/l
108-90-7	Chlorobenzene	ND	1.0	ug/l
75-00-3	Chloroethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
74-87-3	Chloromethane	ND	1.0	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	ug/l
124-48-1	Dibromochloromethane	ND	1.0	ug/l
75-71-8	Dichlorodifluoromethane	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane a	1.7	1.0	ug/l
. <b>7</b> 5-35-4	1,1-Dichloroethene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethene	ND	1.0	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	ug/l
100-41-4	Ethylbenzene	ND	1.0	ug/l
75-09-2	Methylene chloride	ND	5.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	ug/l
79-01-6	Trichloroethene	ND	1.0	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l
75-01-4	Vinyl chloride	ND.	1.0	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	ug/l
1330-20-7	Xylenes (total)	ND	3.0	ug/l
156-69-4	cis-1,2-Dichloroethene	ND	1.0	ug/l
540-59-0	1,2-Dichloroethene (total)	ND	2.0	ug/l

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank



Page 2 of ~

Client Sample ID: 300-MW02-001

Lab Sample ID:

F582-5

Matrix: Method: AQ - Ground Water

EPA 601/602

Date Sampled: 04/23/97

Date Received: 04/25/97 Percent Solids: n/a

Project:

Site G300 CTO 0027

DF

1

Analyzed Вy 04/25/97 AW Prep Date n/a

Prep Batch

**Analytical Batch** 

n/a GEF50

Run #1 Run #2

**VOA PPL List** 

CAS No.

Surrogate Recoveries

Run#1

Limits Run# 2

460-00-4

4-Bromofluorobenzene

108%

75-125%

(a) Confirmed by reanalysis on MS

File ID

EF002010.D

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank



Page 1 of 1

Client Sample ID: 300-MW02-001

Lab Sample ID:

F582-5

Matrix:

Project:

AQ - Ground Water

Method:

EPA 504.1

Site G300 CTO 0027

Date Sampled: 04/23/97

Date Received: 04/25/97

Percent Solids: n/a

File ID DF Prep Batch Analyzed By Prep Date **Analytical Batch** Run #1 AB01848.D 1 04/25/97 NF GAB66 n/a n/a

Run #2

CAS No. Compound Result

RDL

Units Q

106-93-4

1,2-Dibromoethane

ND

0.020 ug/l

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank



Page 1 of

Client Sample ID: 300-MW02-001

Lab Sample ID:

F582-5

Matrix:

AQ - Ground Water

Date Sampled: 04/23/97 Date Received: 04/25/97

Percent Solids: n/a

Project:

Site G300 CTO 0027

**Metals Analysis** 

Analyte Result RDL Units DF Prep Analyzed By Method

Lead 0:0094 0.0030 mg/l 1 05/02/97 05/08/97 JK EPA 239.2



Page 1 of 2

Client Sample ID: TRIP BLANK

Lab Sample ID:

F582-6

AQ - Trip Blank Water

Date Sampled: 04/17/97 Date Received: 04/25/97

Matrix: Method:

EPA 601/602

Percent Solids: n/a

Project:

Site G300 CTO 0027

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch

Run #1 EF002012.D 1 04/25/97 AW n/a n/a

GEF50

Run #2

### **VOA PPL List**

CAS No.	Compound	Result	RDL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-25-2	Bromoform	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
74-83-9	Bromomethane	ND	1.0	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	ug/l
108-90-7	Chlorobenzene	ND	1.0	ug/l
75-00-3	Chloroethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
74-87-3	Chloromethane	ND	1.0	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	ug/l
124-48-1	Dibromochloromethane	ND	1.0	ug/l
75-71-8	Dichlorodifluoromethane	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	2.7	1.0	ug/l
.75-35-4	1,1-Dichloroethene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethene	ND	1.0	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	ug/l
100-41-4	Ethylbenzene	ND	1.0	ug/l
75-09-2	Methylene chloride	ND	<b>5.0</b>	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	ug/l
79-01-6	Trichloroethene	ND	1.0	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l
75-01-4	Vinyl chloride	ND	1.0	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	ug/l
1330-20-7	Xylenes (total)	ND	3.0	ug/l
156-69-4	cis-1,2-Dichloroethene	ND	1.0	ug/l
540-59-0	1,2-Dichloroethene (total)	ND	2.0	ug/l

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank



Page 2 of 2

Client Sample ID: TRIP BLANK

Lab Sample ID:

F582-6

Matrix: Method: AQ - Trip Blank Water

EPA 601/602

Project:

Site G300 CTO 0027

Date Sampled: 04/17/97

Date Received: 04/25/97 Percent Solids: n/a

File ID EF002012.D Run#1

DF 1

Analyzed 04/25/97

By ΑW Prep Date n/a

Prep Batch

Analytical Batch

n/a GEF50

Run #2

**VOA PPL List** 

CAS No.

Surrogate Recoveries

Run# 1

Run#2

Limits

460-00-4

4-Bromofluorobenzene

106%

75-125%

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank

Brown & Root Environmental  REPORT TO IDDRESS: 455 Fairway Drive Suik 200  Deerfield Deach, Florida 3349  TELEPHONE: (305) 570-5985  FAX: (305) 570-5974	PROJECT NAME:	PROJECT NAME: Sik G300 CTO 0027											South	SHIPPED TO: Accutest Laboratores PAGE 1 OF !  Southeast, Inc.  Orlando, FL  ALLEN: Harry Behzadi  (LABORATORY NAME, CITY)						
CHAIN OF CUSTODY RECORD		LABORATORY ANALYSIS																		
SAMPLED BY (PRINT): John G Webster & G SAMPLER SIGNATURE: John G Webster M	icrald F. Guode	TYI	MPLE PE	TRI XIX	PRES TYPE	5. / 1 E 12	1, X 2, X 3, X 3, X 3, X 3, X 3, X 3, X 3	*   \frac{1}{2}		Yau /	Jan 1		7			]24 HE	R. <b>□48</b>	HR. 🔲	ΓΑΤ □ R 72 HR. □ 7	
LAB DATE TIME SAMPLE IDEN	TIFICATION	COMP.	GRAB	Σ	PARAME	16 1/2 / S	12/0	602		260	3/1/2		/_	NUMBER	<i></i>			MMEN		
7582-1 1/20/97 1145 300-MW03-	······································	<u> </u> '	1_1	W	1 1	14	2	2	2	11				9	San	nples	Ic e	<i>u</i> /		
-2 /23/97 1330 300-MW04-		<u> '</u>	!	W		1	2	12	12	<u> </u>  '	<u> </u>			9					<del></del>	
-3 /2/97 1445 200-MWO1-	1001	<u>  '</u>		W	1/1	1	12	2	2	<del></del> -	<u> </u>			9		<u> </u>		<del></del>		
-4 /3/97 1230 300-MW03-	0013	'	1_	W	1/	1	2			-}	'			9			<del></del>			
-5 1/20/97 1530 300 - MWOZ-	.001			W	] []	1	12	2	2	1	<u>_</u> '			9						
-6 1/17/97 1600 Trip Dlank	,			W	1					[_'	2			2						
	,				1															
					1	1														
					1	1						厂	1							
<b> </b>					1	+	+	-				H	7		<del> </del>					
					1	+	+	1-	<del> </del> '	$\vdash$		1	+							
	/	-	-		11	+-	+-	<del> </del>	-		<del></del>	-	+							
ТОТ	AL NUMBER OF C	CON.	 11AT	NER!	5 5	15	+10	10	10	5	2	-		<del>7</del> 7	<u></u>					
CURTY DATAGE DEPTION BUEN BY (CICHARDES) - SEAL	INTACT2 DATE				PTY BO	OVILE	A REC	CÉLVED	D BW (	(SIGN				-	' '	AL INTA	CT?	DATE:	: 4/23/9	77
(YES)	NO N/A TIME: INTACT? DATE 2/9	,		-	) [	Julan		2	1/51	t_	-W			1	YES)		N/A			
RELINOUIS NED BY (SIGNATURE)	INTACT? DATE 12/9	7_		REC	CEIVED	BY (	(SIGN/	ATURE	-)	1				-\  .		AL INTA		DATE:		
O Coho Chillos	NO N/A TIME: /B-	3010	ador		CEIVED	- GY	/CION	A Trigg	-1					-	YES	NO AL INTA	N/A	TIME: DATE:		
	NO N/A TIME:			- 6		ы,	310	HOIL	J						YES	NO	N/A	l		
SPECIAL INSTRUCTIONS: Cushdy See 383			I	LAB	ORA	TOF	₹Y	REM	IARI											
SAMPLE CONTAINERS PRECLEANED BY:  BRE LABORATORY MANUFACTURER	METHOD OF SHIPME	ENT:	Fed	.EX						1	III.	OF I	_ADI	ING	NO.: _	436	192	7/7	2	
<u> </u>	obster Gerald				REÇE	(24Cli)	TEOR NATURE	高於	A TOP			IME;		0:0			- 1		3202	<del></del>

PINK-SAMPLERS' COPY/QA COPY

# QA/QC Data

### BLANK RESULTS SUMMARY Part 2 - Method Blanks

# Login Number: F582 Account: BRFLTALL - Brown & Root Environmental Project: BRFLTALL453 - Site G300 CTO 0027

QC Batch ID: MP332 Matrix Type: AQUEOUS

Methods: EPA 206.2, EPA 239.2

Units: mg/l

Prep Date:

05/02/97

Associated samples MP332: F582-1, F582-2, F582-3, F582-4, F582-5

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

### MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: F582 Account: BRFLTALL - Brown & Root Environmental Project: BRFLTALL453 - Site G300 CTO 0027

QC Batch ID: MP332 Matrix Type: AQUEOUS Methods: EPA 206.2, EPA 239.2

Units: mg/l

Prep Date:

05/02/97

05/02/97

Metal	F589-1 Original MS	Spikelot MPFLFUR & Rec	QC Limits	P589-1 Original	DUP	RPD	QC Limits
Arsenic	anr						
Lead	0.0070 0.032	. 0.020 125.0N	74-123	0.0070	0.0073	0.0	0-12

Associated samples MP332: F582-1, F582-2, P582-3, F582-4, F582-5

Results < IDL are shown as zero for calculation purposes

- (*) Outside of QC limits
  (N) Matrix Spike Rec. outside of QC limits
- (anr) Analyte not requested

### SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: F582
Account: BRFLTALL - Brown & Root Environmental
Project: BRFLTALL453 - Site G300 CTO 0027

QC Batch ID: MP332 Matrix Type: AQUEOUS Methods: EPA 206.2, EPA 239.2

Units: mg/l

Prep Date:

05/02/97

Metal	BSP Result	Spikelo MPFLFUR		QC Limits			
rsenic	anr			: :	 	 	
Lead	0.022	0.020	110.0	80-120			

Associated samples MP332: F582-1, F582-2, F582-3, F582-4, F582-5

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

Blank Spike Summary

Job Number: F582

Account:

BRFLTALL Brown & Root Environmental

Project:

Site G300 CTO 0027

Sample OP83-BS	File ID I01405.D	DF 1	<b>Analyzed</b> 04/22/97	By NF	Prep Date 04/22/97	Prep Batch OP83	Analytical Batch GLJ66

The QC reported here applies to the following samples:

Method: EPA 610

F582-1, F582-2, F582-3, F582-4, F582-5

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
83-32-9	Acenaphthene	50	48.9	98	27-113
208-96-8	Acenaphthylene	50	46.6	93	27-111
120-12-7	Anthracene	50	46.0	92	27-124
56-55-3	Benzo(a)anthracene	50	52.8	106	28-124
50-32-8	Benzo(a)pyrene	50	46.8	94	38-111
205-99-2	Benzo(b)fluoranthene	50	44.5	89	27-121
191-24-2	Benzo(g,h,i)perylene	50	53.7	107	27-115
207-08-9	Benzo(k)fluoranthene	50	44.7	89	25-123
218-01-9	Chrysene	50	53.6	107	29-131
53-70-3	Dibenzo(a,h)anthracene	50	53.0	106	22-114
206-44-0	Fluoranthene	50	46.9	94	28-123
86-73-7	Fluorene	50	47.7	95	28-118
193-39-5	Indeno(1,2,3-cd)pyrene	50	52.8	106	25-119
91-20-3	Naphthalene	50	42.0	84	28-109
90-12-0	1-Methylnaphthalene	50	43.1	86	25-115
91-57-6	2-Methylnaphthalene	50	45.7	91	25-115
85-01-8	Phenanthrene	50	45.8	92	28-121
129-00-0	Pyrene	50	47.4	95	28-122

CAS No.	Surrogate Recoveries	BSP	Limits
321-60-8	2-Fluorobiphenyl	97%	
84-15-1	o-Terphenyl	100%	

Job Number: F582

Account:

BRFLTALL Brown & Root Environmental

Project:

Site G300 CTO 0027

Sample OP89-BS	<b>File ID</b> 101590.D	<b>DF</b> 1	<b>Analyzed</b> 05/02/97	By NF	<b>Prep Date</b> 04/30/97	Prep Batch OP89	Analytical Batch GLJ73

The QC reported here applies to the following samples:

Method: FLORIDA-PRO

F582-1, F582-2, F582-3, F582-4, F582-5

Spike BSP BSP

CAS No. Compound mg/l mg/l % Limits

TPH (C8-C40) 2 2.00 100

CAS No. Surrogate Recoveries BSP Limits

84-15-1 o-Terphenyl 89% 40-140%

Job Number: F582

Account:

BRFLTALL Brown & Root Environmental

Project:

Site G300 CTO 0027

Sample OP83-MB2	File ID I01442.D	DF 1	<b>Analyzed</b> 04/25/97	By NF	<b>Prep Date</b> 04/25/97	Prep Batch OP83	Analytical Batch GLJ68

The QC reported here applies to the following samples:

Method: EPA 610

F582-1, F582-2, F582-3, F582-4, F582-5

CAS No.	Compound	Result	RDL	Units Q
83-32-9	Acenaphthene	ND	10	ug/l
208-96-8	Acenaphthylene	ND	10	ug/l
120-12-7	Anthracene	ND	0 10	ug/l
56-55-3	Benzo(a)anthracene	ND	10	ug/l
50-32-8	Benzo(a)pyrene	ND	10	ug/l
205-99-2	Benzo(b)fluoranthene	ND	10	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	10	ug/l
207-08-9	Benzo(k)fluoranthene	ND	10	ug/l
218-01-9	Chrysene	ND	<b>10</b>	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	10	ug/l
206-44-0	Fluoranthene	ND	<b>10</b>	ug/l
86-73-7	Fluorene	ND	10	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	10	ug/l
91-20-3	Naphthalene	ND	<b>10</b>	ug/l
90-12-0	1-Methylnaphthalene	ND	10	ug/l
91-57-6	2-Methylnaphthalene	ND	10	ug/l
85-01-8	Phenanthrene	ND	10	ug/l
129-00-0	Pyrene	ND	10	ug/l
CAS No.	Surrogate Recoveries	,	Limi	ts
321-60-8	2-Fluorobiphenyl	59%	26-11	6%

	•		
321-60-8	2-Fluorobiphenyl	59%	
84-15-1	o-Terphenyl	98%	26-116%

Method Blank Summary

Job Number: F582

Account: E

BRFLTALL Brown & Root Environmental

Project:

Site G300 CTO 0027

Sample File ID DF Analyzed By Prep Date Prep Batch Analytical Batch

OP89-MB I01582.D 1 05/02/97 NF 04/30/97 OP89 GLJ73

The QC reported here applies to the following samples:

Method: FLORIDA-PRO

Page 1 of 1

F582-1, F582-2, F582-3, F582-4, F582-5

CAS No. Compound Result RDL Units Q

TPH (C8-C40) ND 0.50 mg/l

CAS No. Surrogate Recoveries Limits

84-15-1 o-Terphenyl 73% 40-140%

Account: B

BRFLTALL Brown & Root Environmental

Project:

Site G300 CTO 0027

Sample OP83-MS	File ID I01403.D	DF 1	Analyzed 04/22/97	By NF	Prep Date 04/22/97	OP83	Analytical Batch GLJ66
OP83-MSD F567-1	I01404.D I01397.D	1 1	04/22/97 04/22/97	NF NF	04/22/97 04/22/97	OP83 OP83	GLJ66 GLJ66

The QC reported here applies to the following samples:

Method: EPA 610

F582-1, F582-2, F582-3, F582-4, F582-5

CAS No.	Compound	F567-1 ug/l	Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
83-32-9	Acenaphthene	ND		50	45.5	91	45.0	90	1	27-113/22
208-96-8	Acenaphthylene	ND		50	43.6	87	42.4	85	3	27-111/21
120-12-7	Anthracene	ND		50	42.2	84	43.3	87	2	27-124/24
56-55-3	Benzo(a)anthracene	ND		50	46.4	93	42.8	86	8	28-124/24
50-32-8	Benzo(a)pyrene	ND		<b>5</b> 0	42.6	85	42.2	84	1	38-111/22
205-99-2	Benzo(b)fluoranthene	ND		50	39.8	80 .	40.2	80	1	27-121/24
191-24-2	Benzo(g,h,i)perylene	ND		50	46.6	93	43.6	87	7	27-115/22
207-08-9	Benzo(k)fluoranthene	ND		50	39.8	80	40.7	81	2	25-123/25
218-01-9	Chrysene	ND		50	45.7	91	42.2	84	8	29-131/26
53-70-3	Dibenzo(a,h)anthracene	ND		50	45.4	91	43.0	86	5	22-114/23
206-44-0	Fluoranthene	ND		50	42.3	85	42.4	85	0	28-123/24
86-73-7	Fluorene	ND		50	43.5	87	43.1	86	1	28-118/23
193-39-5	Indeno(1,2,3-cd)pyrene	ND		50	45.7	91	43.1	86	6	25-119/23
91-20-3	Naphthalene	ND		50	41.1	82	39.0	78	5	28-109/20
90-12-0	1-Methylnaphthalene	ND		50	41.3	83	39.2	78	5	25-115/25
91-57-6	2-Methylnaphthalene	ND		50	43.9	88	41.6	83	5	25-115/25
85-01-8	Phenanthrene	ND		50	42.2	84	43.3	87	2	28-121/23
129-00-0	Pyrene	ND		50	42.8	86	42.6	85	0	28-122/24
CAS No.	Surrogate Recoveries	MS		MSD	F	567-1	Limit	s		
321-60-8 84-15-1	2-Fluorobiphenyl o-Terphenyl	87% 86%		80% 87%	00000000000 BA	1% 1%	26-116 26-116			

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: F582

Account:

BRFLTALL Brown & Root Environmental

Project:

Site G300 CTO 0027

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP89-MS	I01588.D	1	05/02/97	NF	04/30/97	OP89	GIJ73
OP89-MSD	I01589.D	1	05/02/97	NF	04/30/97	OP89	GLJ73
F582-5	I01587.D	1	05/02/97	NF	04/30/97	OP89	GLJ73

The QC reported here applies to the following samples:

Method: FLORIDA-PRO

F582-1, F582-2, F582-3, F582-4, F582-5

CAS No.	Compound	F582-5 mg/l	Q	Spike mg/l	MS mg/l	MS %	MSD mg/l	MSD %	RPD	Limits Rec/RPD
	TPH (C8-C40)	.846		2	2.99	107	2.78	97	7	
CAS No.	Surrogate Recoveries	MS		MSD	F5	82-5	Limits			
84-15-1	o-Terphenyl	112%		108%	899	6 .	40-1409	76		

Page 1 of 1

Blank Spike Summary Job Number: F582

Account:

BRFLTALL Brown & Root Environmental

Project:

Site G300 CTO 0027

Sample GAB66-BS	File ID AB01839.D	DF 1	<b>Analyzed</b> 04/25/97	By NF	Prep Date n/a	-	Analytical Batch GAB66
i							

The QC reported here applies to the following samples:

Method: EPA 504.1

F582-1, F582-2, F582-3, F582-4, F582-5

CAS N	No. Compound	Spike ug/l	BSP ug/l	BSP % Limits
106-93	-4 1,2-Dibromoethane	0.25	0.26	104 70-130

Page 1 of 1

# Blank Spike Summary

Job Number: F582

BRFLTALL Brown & Root Environmental

Project:

Site G300 CTO 0027

Sample GEF50-BS	File ID I	l <b>yzed</b> 3/97	By AW	Prep Date n/a	Prep Batch	Analytical Batch GEF50

The QC reported here applies to the following samples:

Method: EPA 601/602

F582-1, F582-2, F582-3, F582-4, F582-5, F582-6

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
		~ <b>g</b> ,-	~ <b>-</b>		
75-25-2	Bromoform	10	8.2	82	50-150
75-27-4	Bromodichloromethane	10	8.8	88	50-150
56-23-5	Carbon tetrachloride	10	9.0	90	50-150
108-90-7	Chlorobenzene	20	16.5	83	50-150
67-66-3	Chloroform	10	9.7	97	50-150
10061-01-5	cis-1,3-Dichloropropene	10	8.3	83	50-150
124-48-1	Dibromochloromethane	10	8.9	89	50-150
75-34-3	1,1-Dichloroethane	10	8.5	85	50-150
107-06-2	1,2-Dichloroethane	10	8.5	85	50-150
75-35-4	1,1-Dichloroethene	10	8.2	82	50-150
156-60-5	trans-1,2-Dichloroethene	10	8.2	82	50-150
10061-02-6	Strans-1,3-Dichloropropene	10	9.2	92	50-150
78-87-5	1,2-Dichloropropane	10	8.8	88	50-150
75-0 <del>9</del> -2	Methylene chloride	10	9.2	92	50-150
79-34-5	1,1,2,2-Tetrachloroethane	10	8.2	82	50-150
127-18-4	Tetrachloroethene	10	8.7	87	50-150
71-55-6	1,1,1-Trichloroethane	10	8.3	83	50-150
79-00-5	1,1,2-Trichloroethane	10	9.0	90	50-150
79-01-6	Trichloroethene	10	7.9	79	50-150
541-73-1	1,3-Dichlorobenzene	20	16.4	82	50-150
106-46-7	1,4-Dichlorobenzene	20	16.9	84	50-150
95-50-1	1,2-Dichlorobenzene	20	16.5	82	50-150
540-59-0	1,2-Dichloroethene (total)	10	8.2	82	50-150

CAS No.	Surrogate Recoveries	BSP	Limits
460-00-4	4-Bromofluorobenzene	102%	75-125%

Method Blank Summary

Job Number: F582

Account:

BRFLTALL Brown & Root Environmental

Project:

Site G300 CTO 0027

Prep Date Prep Batch Analytical Batch Sample File ID  $\mathbf{DF}$ Analyzed By

04/25/97 GAB66-MB AB01838.D 1 NF GAB66 n/a n/a

The QC reported here applies to the following samples:

Method: EPA 504.1

Page 1 of 1

F582-1, F582-2, F582-3, F582-4, F582-5

CAS No. Compound Result RDL Units Q

106-93-4 1,2-Dibromoethane ND 0.020 ug/l

Account:

BRFLTALL Brown & Root Environmental

Project:

Site G300 CTO 0027

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	<b>Analytical Batch</b>	
CDDEA 3 CDA	TT001000	~ -	0.1/0.1/0.=	4 777	,	,	ODDEA	

n/a GEF50 GEF50-MB3 EF001990.D1 04/24/97 n/a AW

The QC reported here applies to the following samples:

Method: EPA 601/602

F582-1, F582-2, F582-3, F582-4, F582-5, F582-6

CAS No.	Compound	Result	RDL	Units Q
75-25-2	Bromoform	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
74-83-9	Bromomethane	ND	1.0	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	ug/l
108-90-7	Chlorobenzene	ND	1.0	ug/l
75-00-3	Chloroethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
74-87-3	Chloromethane	ND	1.0	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	ug/l
124-48-1	Dibromochloromethane	ND	1.0	ug/l
75-71-8	Dichlorodifluoromethane	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethene	ND	1.0	ug/l
1 <del>56-6</del> 0-5	trans-1,2-Dichloroethene	ND	1.0	ug/l
10061-02-6	Strans-1,3-Dichloropropene	ND	1.0	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	ug/l
75-09-2	Methylene chloride	ND	5.0	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethene	ND	1.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	ug/l
79-01-6	Trichloroethene	ND	1.0	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l
75-01-4	Vinyl chloride	ND	1.0	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	ug/l
156-69-4	cis-1,2-Dichloroethene	ND	1.0	ug/l
540-59-0	1,2-Dichloroethene (total)	ND	2.0	ug/l

CAS No. S	Surrogate	Recover	miac
-----------	-----------	---------	------

Limits

460-00-4 4-Bromofluorobenzene

99% 75-125%

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: F582

Account:

BRFLTALL Brown & Root Environmental

Project:

Site G300 CTO 0027

Sample	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
F563-2MS	AB01842.D	1	04/25/97	NF	n/a	n/a	GAB66
F563-2MSD	AB01843.D	1	04/25/97	NF	n/a	n/a	GAB66
F563-2	AB01841.D	1	04/25/97	NF	n/a	n/a	GAB66

The QC reported here applies to the following samples:

Method: EPA 504.1

F582-1, F582-2, F582-3, F582-4, F582-5

CAS No.	Compound	F563-2 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
106-93-4	1,2-Dibromoethane	ND	0.25	0.25	100	0.26	104	4	74.4-121.6/

Page 1 of 1

Account:

BRFLTALL Brown & Root Environmental

Project:

Site G300 CTO 0027

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	<b>Analytical Batch</b>
F573-3MS	EF001978.D	1	04/23/97	ΑW	n/a ¯	n/a	GEF50
F573-3MSD	EF001980.D	1	04/23/97	AW	n/a	n/a	GEF50
F573-3	EF001977.D	1	04/23/97	ΑW	n/a	n/a	GEF50

The QC reported here applies to the following samples:

Method: EPA 601/602

F582-1, F582-2, F582-3, F582-4, F582-5, F582-6

CAS No.	Compound	F573-3 ug/l	Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
75-25-2	Bromoform	ND		10	7.7	77	7.6	76	1	34-126/23
75-27-4	Bromodichloromethane	ND		10	8.4	84	8.2	82	2	54-120/17
56-23-5	Carbon tetrachloride	ND		10	9.0	90	9.6	96	6	48-124/19
108-90-7	Chlorobenzene	ND		30	24.4	81	25.5	85	4	74-129/14
67-66-3	Chloroform	ND		10	8.85	88	9.98	100	1	48-125/19
10061-01-5	cis-1,3-Dichloropropene	ND		10	7.6	76	8.2	82	8	55-119/16
124-48-1	Dibromochloromethane	ND		10	8.1	81	8.4	84	4	57-131/19
75-34-3	1,1-Dichloroethane	ND		10	8.0	80	9.1	91	13	51-136/21
107-06-2	1,2-Dichloroethane	ND		10	8.8	88	9.9	99	12	50-144/23
75-35-4	1,1-Dichloroethene	ND		10	8.2	82	9.1	91	10	72-148/19
156-60-5	trans-1,2-Dichloroethene	ND		10	8.2	82	9.2	92	11	60-128/17
10061-02-6	trans-1,3-Dichloropropene	ND		10	7.8	78	8.6	86	10	49-121/18
78-87-5	1,2-Dichloropropane	ND		10	8.3	83	9.0	90	8	57-121/16
75-09-2	Methylene chloride	ND		10	9.5	95	9.9	99	4	58-110/13
79-34-5	1,1,2,2-Tetrachloroethane	ND		10	8.0	80	8.9	89	11	25-135/28
127-18-4	Tetrachloroethene	ND		10	8.1	81	9.2	92	13	54-127/18
71-55-6	1,1,1-Trichloroethane	ND		10	8.3	83	9.4	94	12	63-112/12
79-00-5	1,1,2-Trichloroethane	ND		10	8.1	81	8.6	86	6	49-133/21
79-01-6	Trichloroethene	15.3		10	20.5	52	21.3	60	4	33-170/34
541-73-1	1,3-Dichlorobenzene	ND		30	24.3	81	25.9	86	6	70-125/14
106-46-7	1,4-Dichlorobenzene	ND		30	25.2	84	25.4	85	1	73-127/14
95-50-1	1,2-Dichlorobenzene	ND		30	24.4	81	25.1	84	3	71-131/15
156-69-4	cis-1,2-Dichloroethene	1.6		10	8.4	68	9.4	78	11	50-150/30
540-59-0	1,2-Dichloroethene (total)	1.6	J	20	16.6	83	18.6	93	11	50-150/30
CAS No.	Surrogate Recoveries	MS		MSD	F	573-3	Limit	s		
460-00-4	4-Bromofluorobenzene	88%	1934.) Görü	99%	96	3%	75-125	5%		

#### BLANK RESULTS SUMMARY Part 2 - Method Blanks

#### Login Number: P581 Account: BRFLTALL - Brown & Root Environmental Project: BRFLTALL453 - Site G300 CTO 0027

QC Batch ID: MP332 Matrix Type: AQUEOUS Methods: EPA 206.2, EPA 239.2 Units: mg/l

Prep Date:

05/02/97

Associated samples MP332: F581-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

DRAFT Analysis Report - Not for Release

Comments:

COMMA Due Date: 05/13/97 V6012PPL

Page 2 of 2

Client Sample IDMW-2

Lab Sample ID: F616-2

Matrix: Method: AQ - Ground Water

EPA 601/602

Date Sampled 05/06/97

Date Received05/06/97 Percent Solidsa/a

Project:

File ID  $\mathbf{DF}$ Prep Date Prep Batch Analytical Batch Analyzed By EF002183.D 05/08/97 ΑW GEF54 Run #1 1 n/a n/a

Run #2

## **VOA PPL List**

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
460-00-4	4-Bromofluorobenzene	107%		75-125%
98-08-8	aaa-Trifluorotoluene	95%		75-125%

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blan

N = Indicates presumptive evidence of a compound

## DRAFT Analysis Report - Not for Release

Comments:

COMMA Due Date: 05/13/97 V6012PPL

Page 1 of 2

Client Sample II	DMW-2
Lab Sample ID:	F616-2

Matrix:

AQ - Ground Water

Method:

EPA 601/602

Date Sampled 05/06/97 Date Received05/06/97 Percent Solidsa/a

Project:

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	EF002183.D	1	05/08/97	ΑW	n/a	n/a	GEF54
Run #2							

## **VOA PPL List**

CAS No.	Compound	Result	RDL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-25-2	Bromoform	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
74-83-9	Bromomethane	ND	1.0 -	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	ug/l
108-90-7	Chlorobenzene	ND	1.0	ug/l
75-00-3	Chloroethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
74-87-3	Chloromethane	ND	1.0	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	ug/l
124-48-1	Dibromochloromethane	ND	1.0	ug/l
75-71-8	Dichlorodifluoromethane	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethene	ND	1.0	ug/l
. 156-60-5	trans-1,2-Dichloroethene	ND	1.0	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	ug/l
78-87 <b>-</b> 5	1,2-Dichloropropane	ND	1.0	ug/l
100-41-4	Ethylbenzene	ND	1.0	ug/l
75-09-2	Methylene chloride	ND	5.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	ug/l
79-01-6	Trichloroethene	ND	1.0	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l
75-01-4	Vinyl chloride	ND	1.0	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	ug/I
95-50-1	1,2-Dichlorobenzene	ND	1.0	ug/l
1330-20-7	Xylenes (total)	ND	3.0	ug/l
156-69-4	cis-1,2-Dichloroethene	ND	1.0	ug/l
540-59-0	1,2-Dichloroethene (total)	ND	2.0	ug/l

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blan

N = Indicates presumptive evidence of a compound

DRAFT Analysis Report - Not for Release

Comments:

COMMA Due Date: 05/07/97 V601STD

Page 2 of 2

Client Sample IDINFLUENT

Lab Sample ID: F617-2

Date Sampled:05/06/97 Date Received05/06/97

Matrix: AQ - Ground Water Method:

EPA 601/602

Percent Solidsa/a

Project:

Prep Batch Analytical Batch File ID DF Analyzed By Prep Date Run #1 a EF002179.D 500 05/08/97 AWn/a n/a GEF54

Run #2

**VOA Halogenated List** 

CAS No. Compound Result RDL Units Q

(a) Dilution required due to matrix interference.

B = Indicates that analyte is found in associated method blan

N = Indicates presumptive evidence of a compound

COMMA Due Date: 05/07/97 V601STD

Client Sample IDINFLUENT

Lab Sample ID: F617-2

Matrix: Method: AQ - Ground Water

EPA 601/602

Project:

Date Sampled 05/06/97

Date Received05/06/97

Percent Solids /a

	File ID	DF	Analyzed	By	Prep Date	Prep Batc	h Analytical Batch
Run #1 a	EF002179.D	500	05/08/97	AW	n/a	n/a	GEF54
Run #2							

## VOA Halogenated List

CAS No.	Compound	Result	RDL	Units Q
75-25-2	Bromoform	ND	500	ug/l
75-27-4	Bromodichloromethane	ND	500	ug/l
74-83-9	Bromomethane	ND	500	ug/l
56-23-5	Carbon tetrachloride	ND	500 /	ug/l
108-90-7	Chlorobenzene	ND	500	ug/l
75-00-3	Chloroethane	ND	500	ug/l
67-66-3	Chloroform	ND	500	ug/l
74-87-3	Chloromethane	ND	500	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	500	ug/l
124-48-1	Dibromochloromethane	ND	500	ug/l
75-71-8	Dichlorodifluoromethane	ND	500	ug/l
75-34-3	1,1-Dichloroethane	ND	500	ug/l
107-06-2	1,2-Dichloroethane	ND	500	ug/l
75-35-4	1,1-Dichloroethene	ND	500	ug/l
156-60-5	trans-1,2-Dichloroethene	ND	500	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	500	ug/l
78-87-5	1,2-Dichloropropane	ND	500	ug/l
75-09-2	Methylene chloride	ND	2500	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	500	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	500	ug/l
127-18-4	Tetrachloroethene	ND	500	ug/l
71-55-6	1,1,1-Trichloroethane	ND	500	ug/l
79-00-5	1,1,2-Trichloroethane	ND	500	ug/l
79-01-6	Trichloroethene	10600	500	ug/l
75-69 <b>-</b> 4	Trichlorofluoromethane	ND	500	ug/l
75-01-4	Vinyl chloride	ND	500	ug/l
541-73-1	1,3-Dichlorobenzene	ND	500	ug/l
106-46-7	1,4-Dichlorobenzene	ND	500	ug/l
95-50-1	1,2-Dichlorobenzene	MD	500	ug/l
156-69-4	cis-1,2-Dichloroethene	ND	500	ug/l
540-59-0	1,2-Dichloroethene (total)	ND	1000	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run#	2 Limits
460-00-4	4-Bromofluorobenzene	96%		75-125%
98-08-8	aaa-Trifluorotoluene	96%	¥ X	75-125%

ND = Not detected

Page 1 of 2

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blan

N = Indicates presumptive evidence of a compound

Account:

BRFLTALL Brown & Root Environmental

Project:

Site G300 CTO 0027

	GEF50	Prep Batch	Prep Date	By AW	Analyzed 04/23/97	le ID DF 001978.D1	Sample F573-3MS
F573-3 EF001977.D1 04/23/97 AW n/a n/a GEF50	GEF50 GEF50	n/a n/a	n/a n/a	AW AW	04/23/97 04/23/97		F573-3MSD F573-3

The QC reported here applies to the following samples:

Method: EPA 601/602

F581-2, F581-5

	CAS No.	Compound	F573-3 ug/l	Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
	75-25-2	Bromoform	ND		10	7.7	77	7.6	76	1	34-126/23
	75-27-4	Bromodichloromethane	ND		10	8.4	84	8.2	82	2	54-120/17
	56-23-5	Carbon tetrachloride	ND		10	9.0	90	9.6	96	6	48-124/19
	108-90-7	Chlorobenzene	ND		30	24.4	81	25. <b>5</b>	85	4	74-129/14
	67-66-3	Chloroform	ND		10	8.85	88	9.98	100	1	48-125/19
		cis-1,3-Dichloropropene	ND		10	7.6	76	8.2	82	8	55-119/16
	124-48-1	Dibromochloromethane	ND		10	8.1	81	8.4	84	4	57-131/19
	75-34-3	1,1-Dichloroethane	ND		10	8.0	80	9.1	91	13	51-136/21
	107-06-2	1,2-Dichloroethane	ND		10	8.8	88	9.9	99	12	50-144/23
	75-35-4	1,1-Dichloroethene	ND		10	8.2	82	9.1	91	10	72-148/19
	156-60-5	trans-1,2-Dichloroethene	ND		10	8.2	82	9.2	92	11	60-128/17
	10061-02-6	trans-1,3-Dichloropropene	ND		10	7.8	78	8.6	86	10	49-121/18
	78-87-5	1,2-Dichloropropane	ND		10	8.3	83	9.0	90	8	57-121/16
	75-09-2	Methylene chloride	ND		10	9.5	95	9.9	99	4	58-110/13
•	79-34-5	1,1,2,2-Tet <del>rachloroet</del> hane	ND		10	8.0	80	8.9	89	11	25-135/28
	127-18-4	Tetrachloroethene	ND		10	8.1	81	9.2	92	13	54-127/18
	71-55-6	1,1,1-Trichloroethane	ND		10	8.3	83	9.4	94	12	63-112/12
	79-00-5	1,1,2-Trichloroethane	ND		10	8.1	81	8.6	86	6	49-133/21
	79-01-6	Trichloroethene	15.3		10	20.5	52	21.3	60	4	33-170/34
	541-73-1	1,3-Dichlorobenzene	ND		30	24.3	81	25.9	86	6	70-125/14
	106-46-7	1,4-Dichlorobenzene	ND		30	25.2	84	25.4	85	1	73-127/14
	95-50-1	1,2-Dichlorobenzene	ND		30	24.4	81	25.1	84	3	71-131/15
	156-69-4	cis-1,2-Dichloroethene	1.6		10	8.4	68	9.4	78	11	50-150/30
	540-59-0	1,2-Dichloroethene (total)	1.6	J	20	16.6	83	18.6	93	11	50-150/30
	CAS No.	Surrogate Recoveries	MS		MSD	F5	73-3	Limit	S		
	460-00-4	4-Bromofluorobenzene	88%	534	99%	96'	<b>%</b>	75-125	%		

## Matrix Spike/Matrix Spike Duplicate Summary

Job Number: F581

Account:

BRFLTALL Brown & Root Environmental

Project:

Site G300 CTO 0027

	Sample F542-5MS F542-5MSD F542-5	File ID EF001998 EF002000 EF001996	.D1	<b>Analyzed</b> 04/24/97 04/24/97 04/24/97	By AW AW AW	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch GEF51 GEF51 GEF51
--	-------------------------------------------	---------------------------------------------	-----	--------------------------------------------	----------------------	--------------------------------	---------------------------------	---------------------------------------------

The QC reported here applies to the following samples:

Method: SW846 8010/8020

F581-1, F581-3, F581-4

CAS No.	Compound	F542-5 ug/kg	Q	Spike ug/kg	MS ug/kg	MS %	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	ND		10	16.6	166*	16.1	161*	3	50-150/30
75-25-2	Bromoform	ND		10	9.6	96	9.0	90	6	50-150/30
75-27-4	Bromodichloromethane	ND		10	9.7	97	10	100	3	50-150/30
56-23-5	Carbon tetrachloride	ND		10	9.7	97	9.4	94	3	50-150/30
108-90-7	Chlorobenzene	ND		10	23.1	231*	23.0	230*	0	50-150/30
67-66-3	Chloroform	ND		10	15.1	151*	11.1	111	30	50-150/30
10061-01-5	cis-1,3-Dichloropropene	ND		10	7.8	78	7.5	75	4	50-150/30
124-48-1	Dibromochloromethane	ND		10	10.0	100	9.5	95	5	50-150/30
75-34-3	1,1-Dichloroethane	ND		10	10.4	104	10.0	100	4	50-150/30
107-06-2	1,2-Dichloroethane	ND		10	10.7	107	9.9	99	8	50-150/30
75-35-4	1,1-Dichloroethene	ND		10	10.4	104	9.9	99	5	50-150/3
156-60-5	trans-1,2-Dichloroethene	ND		10	8.2	82	7.6	76	8	50-150/30
10061-02-6	trans-1,3-Dichloropropene	ND		10	7.6	76	7.6	76	0	50-150/30
78-87 <b>-</b> 5	1,2-Dichloropropane	ND		10	10.1	101	9.7	97	4	50-150/30
100-41-4	Ethylbenzene	ND		10	15.7	157*	15.6	156*	1	50-150/30
75-09-2	Methylene chloride	ND		10	12.3	123	12.1	121	2	50-150/30
79-34-5	1,1,2,2-Tetrachloroethane	ND		10	10.8	108	9.3	93	15	50-150/30
127-18-4	Tetrachloroethene	ND		10	7.7	77	7.5	75	3	50-150/30
108-88-3	Toluene	ND		10	17.3	173*	16.5	165*	5	50-150/30
71-55-6	1,1,1-Trichloroethane	ND		10	10.5	105	9.8	98	7	50-150/30
79-00-5	1,1,2-Trichloroethane	ND		10	10.7	107	10.2	102	5	50-150/30
79-01-6	Trichloroethene	ND		10	8.0	80	7.9	79	1	50-150/30
541-73-1	1,3-Dichlorobenzene	ND		10	19.1	191*	20.7	207*	8	50-150/30
106-46-7	1,4-Dichlorobenzene	ND		10	19.0	190*	20.7	207*	8	50-150/30
95-50-1	1,2-Dichlorobenzene	ND		10	19.3	193*	20.8	208*	7	50-150/30
1330-20-7	Xylenes (total)	ND		30	48.1	160*	46.8	156*	3	50-150/30
156-69-4	cis-1,2-Dichloroethene	ND		30	8.1	27*	7.6	25*	6	50-150/30
CAS No.	Surrogate Recoveries	MS		MSD	F5	42-5	Limits	5		
460-00-4	4-Bromofluorobenzene	94%		102%	989	%	50-150	%		

Method Blank Summary

Job Number: F581

Account: BF

BRFLTALL Brown & Root Environmental

Project:

Site G300 CTO 0027

(a)

Sample GEF51-MB	File ID EF002005.I	<b>DF</b> 01	<b>Analyzed</b> 04/25/97	By AW	Prep Date	Prep Batch n/a	Analytical Batch GEF51	

The QC reported here applies to the following samples:

Method: SW846 8010/8020

Page 2 of 2

F581-1, F581-3, F581-4

CAS No.	Surrogate Recoveries		Limits
74-97-5	Bromochloromethane	34.5ug/kg	-%

 460-00-4
 4-Bromofluorobenzene
 117%
 50-150%

 460-00-4
 4-Bromofluorobenzene
 94%
 50-150%

(a) SAMPLE NOT YET APPROVED BY LAB. DO NOT REPORT.

Account: B

BRFLTALL Brown & Root Environmental

Project:

Site G300 CTO 0027

Sample GEF51-MB	File ID EF002005.D	<b>Analyzed</b> 04/25/97	By AW	Prep Date n/a	Prep Batch n/a	Analytical Batch GEF51

The QC reported here applies to the following samples:

Method: SW846 8010/8020

F581-1, F581-3, F581-4

CAS No.	Compound	Result	RDL	Units Q
71-43-2	Benzene	ND	1.0	ug/kg
75-25-2	Bromoform	ND	1.0	ug/kg
75-27-4	Bromodichloromethane	ND	1.0	ug/kg
74-83-9	Bromomethane	ND	1.0	ug/kg
56-23-5	Carbon tetrachloride	ND	1.0	ug/kg
108-90-7	Chlorobenzene	ND	1.0	ug/kg
75-00-3	Chloroethane	ND	1.0	ug/kg
67-66-3	Chloroform	ND	1.0	ug/kg
74-87-3	Chloromethane	ND	1.0	ug/kg
	cis-1,3-Dichloropropene	ND	1.0	ug/kg
124-48-1	Dibromochloromethane	ND	1.0	ug/kg
75-71-8	Dichlorodifluoromethane	ND	1.0	ug/kg
75-34-3	1,1-Dichloroethane	ND	1.0	ug/kg
107-06-2	1,2-Dichloroethane	ND	1.0	ug/kg
75-35-4	1,1-Dichloroethene	ND	1.0	ug/kg
156-60-5	trans-1,2-Dichloroethene	ND	1.0	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	ug/kg
78-87-5	1,2-Dichloropropane	ND	1.0	ug/kg
100-41-4	Ethylbenzene	ND	1.0	ug/kg
75-09-2	Methylene chloride	4.2	5.0	ug/kg J
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	ug/kg
127-18-4	Tetrachloroethene	ND	1.0	ug/kg
108-88-3	Toluene	ND	1.0	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	1.0	ug/kg
79-01-6	Trichloroethene	ND	1.0	ug/kg
75-69-4	Trichlorofluoromethane	ND	1.0	ug/kg
75-01-4	Vinyl chloride	ND	1.0	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	1.0	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	1.0	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	1.0	ug/kg
1330-20-7	Xylenes (total)	ND	3.0	ug/kg
156-69-4	cis-1,2-Dichloroethene	ND	1.0	ug/kg

Account:

BRFLTALL Brown & Root Environmental

Project:

Site G300 CTO 0027

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	<b>Analytical Batch</b>
GEF50-MB3	EF001990	.D1	04/24/97	ΑW	n/a	n/a	GEF50

The QC reported here applies to the following samples:

Method: EPA 601/602

F581-2, F581-5

CAS No.	Compound	Result	RDL	Units Q
75-25-2	Bromoform	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
74-83-9	Bromomethane	ND	1.0	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	ug/l
108-90-7	Chlorobenzene	ND	1.0	ug/l
75-00-3	Chloroethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
74-87-3	Chloromethane	ND	1.0	ug/l
10061-01-5	5 cis-1,3-Dichloropropene	ND	1.0	ug/l
124-48-1	Dibromochloromethane	ND	1.0	ug/l
75-71-8	Dichlorodifluoromethane	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethene	ND	1.0	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	ug/l
75-09-2	Methylene chloride	ND	5.0	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethene	ND	1.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	ug/l
79-01-6	Trichloroethene	ND	1.0	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l
75-01-4	Vinyl chloride	ND	1.0	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	ug/l
156-69-4	cis-1,2-Dichloroethene	ND	1.0	ug/l
540-59-0	1,2-Dichloroethene (total)	ND	2.0	ug/l
CAS No.	Surrogate Recoveries		Limi	ts
		And the second property of the second	announce .	

460-00-4 4-Bromofluorobenzene

99% 75-125%

Blank Spike Summary Job Number: F581

Account:

BRFLTALL Brown & Root Environmental

Project:

Site G300 CTO 0027

Sample GEF51-BS	File ID DF EF001987.D1	<b>Analyzed</b> 04/23/97	By AW	Prep Date	Prep Batch	Analytical Batch GEF51	
GEI 01 EE	11 001001.20 1	0 1 20/0 1	1111	144			

The QC reported here applies to the following samples:

Method: SW846 8010/8020

F581-1, F581-3, F581-4

		Spike	BSP	BSP	
CAS No.	Compound	ug/kg	ug/kg	%	Limits
	_	4.0		::#:11::::::::::::::::::::::::::::::::	
71-43-2	Benzene	10	8.7	87	50-150
75-25-2	Bromoform	10	9.1	91	50-150
75-27-4	Bromodichloromethane	10	10.0	100	50-150
56-23-5	Carbon tetrachloride	10	10.8	108	50-150
108-90-7	Chlorobenzene	10	18.6	186*	50-150
67-66-3	Chloroform	10	12.3	123	50-150
10061-01-5	cis-1,3-Dichloropropene	10	8.7	87	50-150
124-48-1	Dibromochloromethane	10	9.6	96	50-150
75-34-3	1,1-Dichloroethane	10	9.8	98	50-150
107-06-2	1,2-Dichloroethane	10	9.5	95	50-150
75-35-4	1,1-Dichloroethene	10	10.6	106	50-150
156-60-5	trans-1,2-Dichloroethene	10	8.8	88	50-150
10061-02-6	trans-1,3-Dichloropropene	10	8.3	83	50-150
78-87-5	1,2-Dichloropropane	10	10.2	102	50-150
100-41-4	Ethylbenzene	10	9.7	97	50-150
75-09-2	Methylene chloride	10	10.6	106	50-150
79-34-5	1,1,2,2-Tetrachloroethane	10	8.9	89	50-150
127-18-4	Tetrachloroethene	10	9.0	90	50-150
108-88-3	Toluene	10	9.5	95	50-150
71-55-6	1,1,1-Trichloroethane	10	10.3	103	50-150
79-00-5	1,1,2-Trichloroethane	10	9.7	97	50-150
79-01-6	Trichloroethene	10	9.8	98	50-150
541-73-1	1,3-Dichlorobenzene	10	18.4	184*	50-150
106-46-7	1,4-Dichlorobenzene	10	18.5	185*	50-150
95-50-1	1,2-Dichlorobenzene	10	17.8	178*	50-150
1330-20-7	Xylenes (total)	30	27.4	91	50-150

CAS No.	Surrogate Recoveries	BSP	Limits
460-00-4	4-Bromofluorobenzene	108%	50-150%

Blank Spike Summary Job Number: F581

Account: BF

BRFLTALL Brown & Root Environmental

Project:

Site G300 CTO 0027

Sample	File ID DF	<b>Analyzed</b> 04/23/97	By	Prep Date	Prep Batch	Analytical Batch
GEF50-BS	EF001982.D1		AW	n/a	n/a	GEF50
	•					

The QC reported here applies to the following samples:

Method: EPA 601/602

F581-2, F581-5

		Spike	BSP	BSP	
CAS No.	Compound	ug/l	ug/l	%	Limits
75-25-2	Bromoform	10	8.2	82	50-150
75-27-4	Bromodichloromethane	10	8.8	88	50-150
56-23-5	Carbon tetrachloride	10	9.0	90	50-150
108-90-7	Chlorobenzene	20	16.5	83	50-150
67-66-3	Chloroform	10	9.7	97	50-150
10061-01-5		10	8.3	83	50-150
124-48-1	Dibromochloromethane	10	8.9	89	50-150
75-34-3	1,1-Dichloroethane	10	8.5	85	50-150
107-06-2	1,2-Dichloroethane	10	8.5	85	50-150
75-35-4	1,1-Dichloroethene	10	8.2	82	50-150
156-60-5	trans-1,2-Dichloroethene	10	8.2	82	50-150
	trans-1,3-Dichloropropene	10	9.2	92	50-150
78-87-5	1,2-Dichloropropane	10	8.8	88	50-150
•		10	9.2	92	50-150
75-09-2	Methylene chloride		-	92 82	*
79-34-5	1,1,2,2-Tetrachloroethane	10	8.2	\$100 consistences	50-150
127-18-4	Tetrachloroethene	10	8.7	87	50-150
71-55-6	1,1,1-Trichloroethane	10	8.3	83	50-150
79-00-5	1,1,2-Trichloroethane	10	9.0	90	50-150
79-01-6	Trichloroethene	10	7.9	79	50-150
541-73-1	1,3-Dichlorobenzene	20	16.4	82	50-150
106-46-7	1,4-Dichlorobenzene	20	16.9	84	50-150
95-50-1	1,2-Dichlorobenzene	20	16.5	82	50-150
540-59-0	1,2-Dichloroethene (total)	10	8.2	82	50-150

CAS No.	Surrogate Recoveries	BSP	Limits
460-00-4	4-Bromofluorobenzene	102%	75-125%

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: F581

Account:

BRFLTALL Brown & Root Environmental

Project:

Site G300 CTO 0027

Sample	File ID	$\mathbf{DF}$	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP89-MS	I01588.D	1	05/02/97	NF	04/30/97	OP89	GLJ73
OP89-MSD	I01589.D	1	05/02/97	NF	04/30/97	OP89	GIJ73
F582-5	I01587.D	1	05/02/97	NF	04/30/97	OP89	GIJ73

The QC reported here applies to the following samples:

Method: FLORIDA-PRO

F581-2

CAS No.	Compound	F582-5 mg/l G	Spike mg/l	MS mg/l	MS %	MSD mg/l	MSD %	RPD	Limits Rec/RPD
	TPH (C8-C40)	.846	2	2.99	107	2.78	97	7	
CAS No.	Surrogate Recoveries	MS	MSD	F58	<b>32-5</b>	Limits	<b>;</b>		
84-15-1	o-Terphenyl	112%	108%	89%	6	40-1409	<b>%</b>		

Page 1 of 1

Account: E

BRFLTALL Brown & Root Environmental

Project:

Site G300 CTO 0027

Sample	File ID	$\mathbf{DF}$	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP85-MS	I01474.D	1	04/29/97	NF	04/28/97	OP85	GIJ69
OP85-MSD	I01475.D	1	04/29/97	NF	04/28/97	OP85	GIJ69
F581-1	I01473.D	1	04/28/97	NF	04/28/97	OP85	GIJ69

The QC reported here applies to the following samples:

Method: EPA 8100

F581-1, F581-3, F581-4

CAS No.	Compound	F581-1 ug/kg (	ð	Spike ug/kg	MS ug/kg	MS %	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
83-32-9	Acenaphthene	ND		848	636	75	621	73	2	32-99/17
208-96-8	Acenaphthylene	ND		848	616	73	601	71	2	26-90/16
120-12-7	Anthracene	ND		848	585	69	611	72	4	32-106/19
56-55-3	Benzo(a)anthracene	ND		848	633	75	634	75	0	35-127/23
50-32-8	Benzo(a)pyrene	ND		848	599	71	597	70	0	21-97/14
205-99-2	Benzo(b)fluoranthene	ND		848	666	78	651	77	2	40-130/23
191-24-2	Benzo(g,h,i)perylene	ND		848	621	73	668	79	7	36-141/26
207-08-9	Benzo(k)fluoranthene	ND		848	659	78	650	77	1	47-141/24
218-01-9	Chrysene	ND		848	634	75	634	75	0	37-120/23
53-70-3	Dibenzo(a,h)anthracene	ND		848	582	69	622	73	7	44-132/22
206-44-0	Fluoranthene	ND		848	668	79	687	81	3	33-125/23
86-73-7	Fluorene	ND		848	654	77	635	75	3	35-108/18
193-39-5	Indeno(1,2,3-cd)pyrene	ND		848	616	73	671	79	8	53-144/23
91-20-3	Naphthalene	ND		848	574	68	554	65	4	20-96/14
90-12-0	1-Methylnaphthalene	ND		848	568	67	550	65	3	35-120/25
91-57-6	2-Methylnaphthalene	ND		848	604	71	584	69	3	35-120/25
85-01-8	Phenanthrene	ND		848	627	74	658	78	5	37-117/20
129-00-0	Pyrene	ND		848	636	75	648	76	2	37-120/21
CAS No.	Surrogate Recoveries	MS		MSD	<b>F</b> 5	81-1	Limits	<b>3</b>		
321-60-8 84-15-1	2-Fluorobiphenyl o-Terphenyl	74% 75%		71% 78%	.659 749	. + 60000000000000000	35-120° 35-120°			

Account: BRFLTALL Brown & Root Environmental

Project: Site G300 CTO 0027

OP83-MSD	al Batch	GIJ66	Prep Batch OP83	<b>Prep Date</b> 04/22/97	By NF	<b>Analyzed</b> 04/22/97	DF 1	File ID I01403.D	Sample OP83-MS
		GLJ66	OP83	04/22/97	NF	04/22/97	1	I01404.D	OP83-MSD
F567-1 I01397.D 1 04/22/97 NF 04/22/97 OP83 GLJ66		GIJ66	OP83	04/22/97	NF	04/22/97	1	I01397.D	F567-1

The QC reported here applies to the following samples:

Method: EPA 610

F581-2

CAS No.	Compound	F567-1 ug/l	Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
83-32-9	Acenaphthene	ND		50	45.5	91	45.0	90	1	27-113/22
208-96-8	Acenaphthylene	ND		50	43.6	87	42.4	85	3	27-111/21
120-12-7	Anthracene	ND		50	42.2	84	43.3	87	2	27-124/24
56-55-3	Benzo(a)anthracene	ND		50	46.4	93	42.8	86	8	28-124/24
50-32-8	Benzo(a)pyrene	ND		50	42.6	85	42.2	84	1	38-111/22
205-99-2	Benzo(b)fluoranthene	ND		50	39.8	80	40.2	80	1	27-121/24
191-24-2	Benzo(g,h,i)perylene	ND		50	46.6	93	43.6	87	7	27-115/22
207-08-9	Benzo(k)fluoranthene	ND		50	39.8	80	40.7	81	2	25-123/25
218-01-9	Chrysene	ND		50	45.7	91	42.2	84	8	29-131/26
53-70-3	Dibenzo(a,h)anthracene	ND		50	45.4	91	43.0	86	5	22-114/2?
206-44-0	Fluoranthene	ND		50	42.3	85	42.4	85	0	28-123/24
86-73-7	Fluorene	ND		50	43.5	87	43.1	86	1	28-118/23
193-39-5	Indeno(1,2,3-cd)pyrene	ND		50	45.7	91	43.1	86	6	25-119/23
91-20-3	Naphthalene	ND		50	41.1	82	39.0	78	5	28-109/20
- <del>9</del> 0-12-0	1-Methylnaphthalene	ND		50	41.3	83	39.2	78	5	25-115/25
91-57-6	2-Methylnaphthalene	ND		50	43.9	88	41.6	83	5	25-115/25
85-01-8	Phenanthrene	ND		50	42.2	84	43.3	87	2	28-121/23
129-00-0	Pyrene	ND		50	42.8	86	42.6	85	0	28-122/24
CAS No.	Surrogate Recoveries	MS		MSD	F	567-1	Limit	s		
321-60-8 84-15-1	2-Fluorobiphenyl o-Terphenyl	87% 86%		80% 87%	76 94	% .%	26-116 26-116			

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: F581

Account:

BRFLTALL Brown & Root Environmental

Project:

Site G300 CTO 0027

Sample	File ID	$\mathbf{DF}$	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
OP74-MS	I01336.D	1	04/09/97	NF	04/07/97	OP74	GLJ62
OP74-MSD	I01337.D	1	04/09/97	NF	04/07/97	OP74	GLJ62
F503-1	I01335.D	1	04/09/97	NF	04/07/97	OP74	GIJ62

The QC reported here applies to the following samples:

Method: FLORIDA-PRO

F581-1, F581-3, F581-4

CAS No.	Compound	F503-1 mg/kg Q	Spike mg/kg		MS %	MSD mg/kg	MSD %	RPD	Limits Rec/RPD
	TPH (C8-C40)	13.4	38.7	51.9	99	62.9	128	19	
CAS No.	Surrogate Recoveries	MS	MSD	F5(	)3-1	Limits			
84-15-1	o-Terphenyl	62%	61%	58%	5	40-1409	%		

Page 1 of 1

Method Blank Summary

Job Number: F581

Account:

BRFLTALL Brown & Root Environmental

Project:

Site G300 CTO 0027

Sample	File ID	$\mathbf{DF}$	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
OP89-MB	I01582.D	1	05/02/97	NF	04/30/97	OP89	GIJ73

The QC reported here applies to the following samples:

Method: FLORIDA-PRO

Page 1 of 1

F581-2

CAS No. Compound Result RDL Units Q

TPH (C8-C40) ND 0.50 mg/l

CAS No. Surrogate Recoveries Limits

84-15-1 o-Terphenyl 73% 40-140%

Account: BRFLTALL Brown & Root Environmental

Project:

Site G300 CTO 0027

Sample OP85-MB	File ID I01465.D	DF 1	<b>Analyzed</b> 04/28/97	By NF	<b>Prep Date</b> 04/28/97	Prep Batch OP85	Analytical Batch GLJ69

Limits

The QC reported here applies to the following samples:

Method: EPA 8100

F581-1, F581-3, F581-4

CAS No.	Compound	Result	RDL	Units Q
83-32-9	Acenaphthene	ND	330	ug/kg
208-96-8	Acenaphthylene	ND	330	ug/kg
120-12-7	Anthracene	ND	ຶ 330 ∕ີ	ug/kg
56-55-3	Benzo(a)anthracene	ND	330	ug/kg
50-32-8	Benzo(a)pyrene	ND	330	ug/kg
205-99-2	Benzo(b)fluoranthene	ND	330	ug/kg
191-24-2	Benzo(g,h,i)perylene	ND	330	ug/kg
207-08-9	Benzo(k)fluoranthene	ND	330	ug/kg
218-01-9	Chrysene	ND	330	ug/kg
53-70-3	Dibenzo(a,h)anthracene	ND	330	ug/kg
206-44-0	Fluoranthene	ND	330	ug/kg
86-73-7	Fluorene	ND	330	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene	ND	330	ug/kg
91-20-3	Naphthalene	ND	330	ug/kg
90-12-0	1-Methylnaphthalene	ND	330	ug/kg
91-57-6	2-Methylnaphthalene	ND	330	ug/kg
85-01-8	Phenanthrene	ND	330	ug/kg
129-00-0	Pyrene	ND	330	ug/kg
		2		

321-60-8	2-Fluorobiphenyl	78% 35-120%	,
84-15-1	o-Terphenyl	87% 35-120%	,

CAS No. Surrogate Recoveries

Account:

BRFLTALL Brown & Root Environmental

Project:

Site G300 CTO 0027

Sample OP83-MB2	<b>File ID</b> I01442.D	DF 1	<b>Analyzed</b> 04/25/97	By NF	<b>Prep Date</b> 04/25/97	Prep Batch OP83	Analytical Batch GIJ68
1							

The QC reported here applies to the following samples:

Method: EPA 610

F581-2

CAS No.	Compound	Result	RDL	Units Q
83-32-9	Acenaphthene	ND	10	ug/l
208-96-8	Acenaphthylene	ND	10	ug/l
120-12-7	Anthracene	ND	10	ug/l
56-55-3	Benzo(a)anthracene	ND	10	ug/l
50-32-8	Benzo(a)pyrene	ND	<b>10</b>	ug/l
205-99-2	Benzo(b)fluoranthene	ND	10	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	10	ug/l
207-08-9	Benzo(k)fluoranthene	ND	10	ug/l
218-01-9	Chrysene	ND	10	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	10	ug/l
206-44-0	Fluoranthene	ND	10	ug/l
86-73-7	Fluorene	ND	10	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	10	ug/l
91-20-3	Naphthalene	ND	<b>10</b>	ug/l
90-12-0	1-Methylnaphthalene	ND	10	ug/l
91-57-6	2-Methylnaphthalene	ND	10	ug/l
85-01-8	Phenanthrene	ND	10	ug/l
129-00-0	Pyrene	ND	10	ug/l
CAS No.	Surrogate Recoveries	Limits		
321-60-8	2-Fluorobiphenyl	59%	26-11	6%
84-15-1	o-Terphenyl	98% 26-116%		

Method Blank Summary

Job Number: F581

Account:

BRFLTALL Brown & Root Environmental

Project:

Site G300 CTO 0027

Sample OP74-MB2	File ID I01576.D	DF 1	<b>Analyzed</b> 05/02/97	By NF	<b>Prep Date</b> 05/01/97	Prep Batch OP74	Analytical Batch GU73

The QC reported here applies to the following samples:

Method: FLORIDA-PRO

Page 1 of 1

F581-1, F581-3, F581-4

CAS No. Compound Result RDL Units Q

TPH (C8-C40) ND 8.3 mg/kg

CAS No. Surrogate Recoveries Limits

84-15-1 o-Terphenyl 51% 40-140%

Blank Spike Summary

Job Number: F581

Account: BRFLTALL Brown & Root Environmental

Project:

Site G300 CTO 0027

Sample File ID DF Analyzed By Prep Date Prep Batch Analytical Batch

OP89-BS I01590.D 1 05/02/97 NF 04/30/97 OP89 GLJ73

The QC reported here applies to the following samples:

Method: FLORIDA-PRO

Page 1 of 1

F581-2

Spike BSP BSP

CAS No. Compound mg/l mg/l % Limits

TPH (C8-C40) 2 2.00 100

CAS No. Surrogate Recoveries BSP Limits

84-15-1 o-Terphenyl 89% 40-140%

Account: BRF

BRFLTALL Brown & Root Environmental

Project:

Site G300 CTO 0027

Sample OP85-BS	File ID I01476.D	DF 1	<b>Analyzed</b> 04/29/97	By NF	Prep Date 04/28/97	Prep Batch OP85	Analytical Batch GLJ69

The QC reported here applies to the following samples:

Method: EPA 8100

F581-1, F581-3, F581-4

ts

Blank Spike Summary Job Number: F581

Account: BRF

BRFLTALL Brown & Root Environmental

Project:

Site G300 CTO 0027

Sample OP83-BS	<b>File ID</b> I01405.D	DF 1	<b>Analyzed</b> 04/22/97	By NF	<b>Prep Date</b> 04/22/97	Prep Batch OP83	Analytical Batch GLJ66

The QC reported here applies to the following samples:

Method: EPA 610

F581-2

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
83-32-9	Acenaphthene	50	48.9	98	27-113
208-96-8	Acenaphthylene	50	46.6	93	27-111
120-12-7	Anthracene	50	46.0	92	27-124
56-55-3	Benzo(a)anthracene	50	52.8	106	28-124
50-32-8	Benzo(a)pyrene	50	46.8	94	38-111
205-99-2	Benzo(b)fluoranthene	50	44.5	89	27-121
191-24-2	Benzo(g,h,i)perylene	50	53.7	107	27-115
207-08-9	Benzo(k)fluoranthene	50	44.7	89	25-123
218-01-9	Chrysene	50	53.6	107	29-131
53-70-3	Dibenzo(a,h)anthracene	50	53.0	106	22-114
206-44-0	Fluoranthene	50	46.9	94	28-123
86-73-7	Fluorene	50	47.7	95	28-118
193-39-5	Indeno(1,2,3-cd)pyrene	50	52.8	106	25-119
91-20-3	Naphthalene	50	42.0	84	28-109
90-12-0	1-Methylnaphthalene	50	43.1	86	25-115
91-57-6	2-Methylnaphthalene	50	45.7	91	25-115
85-01-8	Phenanthrene	50	45.8	92	28-121
129-00-0	Pyrene	50	47.4	95	28-122

CAS No.	Surrogate Recoveries	BSP	Limits
321-60-8	2-Fluorobiphenyl	97%	
84-15-1	o-Terphenyl	100%	

Blank Spike Summary

Page 1 of 1

Job Number: F581

Account:

BRFLTALL Brown & Root Environmental

Project:

Site G300 CTO 0027

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch	
OP74-BS	I01333.D	1	04/08/97	NF	04/07/97	OP74	GIJ62	

The QC reported here applies to the following samples:

Method: FLORIDA-PRO

F581-1, F581-3, F581-4

Spike BSP BSP

CAS No. Compound mg/kg mg/kg % Limits

TPH (C8-C40) 33.3 36.6 110

CAS No. Surrogate Recoveries BSP Limits

84-15-1 o-Terphenyl 81% 40-140%

#### SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: F581
Account: BRFLTALL - Brown & Root Environmental
Project: BRFLTALL453 - Site G300 CTO 0027

QC Batch ID: MP340 Matrix Type: AQUEOUS Methods: SW846 7060, SW846 7421

Units: mg/kg

Prep Date:

05/05/97

İ	Metal	BSP Result	Spikelot MPFLFUR	1 Rec	QC Limits
- 1					

Arsenic

anr

Associated samples MP340: F581-1, F581-3, F581-4

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

### MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: P581 Account: BRFLTALL - Brown & Root Environmental Project: BRFLTALL453 - Site G300 CTO 0027

QC Batch ID: MP340 Matrix Type: AQUEOUS Methods: SW846 7060, SW846 7421

Units: mg/kg

Prep Date:

05/05/97

05/05/97

Metal	P606-1 Original DUP	RPD	QC Limits	P606-1 Original MS	Spikelot MPFLFUR	t Rec	QC Limits	
Arsenic	anr							
Lead								

Associated samples MP340: F581-1, F581-3, F581-4

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

#### BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: F581 Account: BRFLTALL - Brown & Root Environmental

Project: BRFLTALL453 - Site G300 CTO 0027

QC Batch ID: MP340 Matrix Type: AQUEOUS Methods: SW846 7060, SW846 7421

Units: mg/kg

Prep Date:

05/05/97

Associated samples MP340: F581-1, F581-3, F581-4

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

### SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: F581
Account: BRFLTALL - Brown & Root Environmental
Project: BRFLTALL453 - Site G300 CTO 0027

QC Batch ID: MP332 Matrix Type: AQUEOUS Methods: EPA 206.2, EPA 239.2 Units: mg/l

Prep Date:

05/02/97

Associated samples MP332: F581-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

#### MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: F581
Account: BRFLTALL - Brown & Root Environmental
Project: BRFLTALL453 - Site G300 CTO 0027

QC Batch ID: MP332 Matrix Type: AQUEOUS Methods: EPA 206.2, EPA 239.2

Units: mg/l

Prep Date:

05/02/97

05/02/97

Metal	P589-1 Original MS	Spikelot MPFLFUR % Rec	QC Limits	F589-1 Original DUP	°QC RPD Limits	
Arsenic	anr				0.0 0-12	
Lead	0.0070 0.032	0.020 125.0N	74-123	0.0070 0.0073	0.0 0-12	

Associated samples MP332: F581-2

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

### **APPENDIX K**

### FIELD MEASUREMENTS AND SAMPLING FORMS

Subject FIELD DOCUMENTATION	Number SA-6.3	Page 17 of 32		
·	Revisian	Effective Date		
	0	03/01/96		

		MEASU	REMENT SH	IEET	Page of
ROJECT N	UMBER:		MEAS	TION: Panen URING DEVIC	E: glastionic whi
ATE:3	121197	INS: over cost	REMA	STMENT FAC ARKS:	
*			Water Level	Groundwater	
Piezometer Number	····lime	Reference Poin		Elevations	Commande
PZ-1	8:40	10.44	8.73	1.71	None
PZ - Z	8:3-	/0.00	8.37	1.63	1/2
02-3	8:35	10.17	8.64	1.53	None
<del></del>	<del></del>				:
			<del>-</del>	6300	perl
			Z	6 500	j
					<b></b>
	_			PZ-2	P2-3
Swy El-	runkon 0.	ont is nort	-Usida 07		
Fron M	<u> ۹۰ د ۱۰</u>	ree con		to rute	reteresced
		1 1 1 8	inh well		
7-1-1	DITC	1111	- 14"00 PUL	well Cosi	<del>-</del>
wellco	p strong				8
		↓ Ц		ļ	

Subject FIELD DOCUMENTATION	Number SA-6.3	Page 17 of 32		
	Revision	Effective Date		
	0	03/01/96		

## ATTACHMENT C-1 EXAMPLE GROUNDWATER LEVEL MEASUREMENT SHEET

11/1/2

## GROUNDWATER LEVEL MEASUREMENT SHEET

Page ( of /

17		MEASO	KEMENT SE	<u>icer</u>	Page 1 of 1	
PROJECT NA	ME: <u>C7</u>	00027	LOCA	ATION: 30C	>	
PROJECT NU	JMBER:	7540	MEAS 12 Goode ADJU	URING DEVICE	OR.	
DATE: 4//	23/57	•	REMA	ARKS.		
WEATHER C	ONDITIO	NS: Duercast	Sight birrz	e, 650F	·	
Welliar		Elevation of	Water Level	Groundwater		well
Piezometers	E Walliman	Reference-Point	Water Level	Elevation	Completes	CFor
Number	74.0	monument manages and as				1
PZ-1	0943	10.44	9.13	1.31		10.
PZ-2	1949	10.00	9.38	1.62		13.6
PZ-3	0955	10.17	9.75	1.42	<u> </u>	17.
Pcy-300 - Muol	1028	10.28	8.83	1.21		14
Pey-300-1002		· · · · · · · · · · · · · · · · · · ·	8 79	<del>+</del>	<u>                                     </u>	14.
Pc4-300-MW63		1630	8.94	1.36		14
P(4-300-14-62	1 10 7 3	8.91	7.28	1.63	<u> </u>	<del>    '                                 </del>
	1	1				
			1			-
	<del> </del>	1	1	<del>                                     </del>		<u> </u>
		<u> </u>		<del>                                     </del>		1.1
				1		1
		1			1	1
					·	}
						1
						<del> </del>
	-					1
				<del></del>		1
		1	<del> </del>			1
		<u></u>		<del> </del>		1
	<del></del>	<u> </u>				11
L	<u> </u>	<u>!</u>		<u> </u>		<b>┚</b> │

*Measurements to nearest 0.01 foot.

Signature(s): Mentel Trook

Subject FIELD DOCUMENTATION	Number SA-6.3	Page 17 of 32
	Revision	Effective Date
	0	03/01/96

### ATTACHMENT C-1 EXAMPLE GROUNDWATER LEVEL MEASUREMENT SHEET



## GROUNDWATER LEVEL

VEATHER CO	MBER: _ , John G L 97 )NOITION	7540 Websfor Gerald NS: Clear Skies	MEAS Coode ADJU REMA slight breeze	STMENT FACTURES:	E: <u>Yake level andicab</u> a TOR:	-
Well or Prezometer	u Time	° Elevation at Reference Point	Water Level	Groundwates	======================================	TOLL
Number		್ಷಕ್ಟ್ ಕ್ಷಾಕ್ಷ್ಮ್ ಕ್ಷ್ಮ್ರಾಕ್ಟ್ರಿಕ್ಟ್	Reading (Feet) 5	(Feet)		Ryth
CY-300-NUCL	0810	10.28	18.85	1.43		14.9
(4-300 - MUSZ	0815	10.00	8.83	1.17		14-90
) <u>( Y - 38) - MW63</u>   ( Y -300 - MW64		10.30 8.91	7.29	1.34		14.90

Bro	wn	8.	Roo	t Ei	nvironmenta	i		SAMP	UNG LOC	\$\$\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta\delta	agista.	distriction of	Page ( of	7
BRE	Pro	iect	No:	75	-40		Oate: 3/21/97	-	Sampler(s):	Tule	00	Twel		/
Clie	nt Si	ite i	D: C	70	027									
Wei	ther	r:	Ov.	11/	oct 70° p	:	Facility Address: Sampling Method: T	eflon Bailer	Y M Oth	er M			SOP Cleaning	Y N
Carr	mer	nts:	لــــــــــــــــــــــــــــــــــــــ	موزر	11 dove	opnost.	: Punced I	94/10.	· / tran	- well	1 4 5	ing por:	stolliz p	v-P
•	<u>-d</u>		نوسخ	<u> </u>	poing.	Used No	· Punced I	of Hoson	Jubi-	3 70 c	<u>ہر دل</u>	: 16 Brun	+	
							- <del></del>			7		·		
						<del></del>					-			
984.3	GRO	V.E.X	OWA	TER	SYSTEM PER	ORMANCE A	NO QUALITY CONT	ROL SAMPLI	ES			TEST PARAME	TERS	
لک	а	٥	٥	٤	Samole IO	Time	Source	ρΗ	Tema.	So. Cond.		Test Method	Container Trae	Promire, Type
							GWS Influent				A	<u> </u>		
j				]			GWS Elliuent				9		<u> </u>	
							Equament Hens	<u> </u>			C		<u> </u>	
							Equament disns		···		<u> </u>	<u> </u>	<u> </u>	
					·		Tng Blanz				Ε.	<u> </u>	<u> </u>	-
		_					Outricate ( )	<u> </u>				<u> </u>	<u> </u>	
	لب	<u></u>					Outreste ( )						<del> </del>	<u> </u>
	GRO	36W	DVV.	TE	SAMPLES						TD		DTW	Purge Vol
					PZ-1	9:50		7.01	19.5	174,7	10	1"	8.73	2 cm
						10:00		1	19.7					0
						10:10		7.01	19.5	16517				
		Γ												
			Ī				1							
													1	
-														
						<del>                                     </del>								
		İ	İ			<u> </u>	İ							
	<u> </u>		İ		,		<u> </u>	1	<u> </u>					
_		T	İ			Ivale	17:5-6/19	11	\$1	deve	1/20	heart-		
_	<u> </u>	<del> </del>			<u> </u>	- Na	10.302/19	21914	2,0	1	7			
Γ		$\vdash$	H	_		Total	, Lab	£0		0 11		0 01	10'6	15.
	<u> </u>	İ	<del></del>			10,7-04	J. 200						1	
			<del></del>			<del>                                     </del>	<del></del>	†		<u> </u>	T	<u>,                                      </u>	<del>                                     </del>	
	<u> </u>		T	$\vdash$		<del> </del>		1		<u> </u>		Ī	<del>†</del>	
	<del>                                     </del>	-	T	$\vdash$		<u> </u>	<u> </u>	<del> </del>		<del>                                     </del>	$\dagger$	<del> </del>		
	<del>                                     </del>	$\vdash$	+	-				<del> </del>	<del> </del>	<del>                                     </del>		<del>                                     </del>	<del>'</del>	
		<del>                                     </del>	<del> </del>	-		<del>                                     </del>		1		<del>                                     </del>	<del> </del>	+		<del> </del>
-	<del> </del>	+	<del> </del>			<del> </del>		<del>                                     </del>	<del> </del>		<del>                                     </del>	+	<del> </del>	
-	+-	+	-	$\vdash$	-	<del> </del>		+	ļ	<del> </del>	<del> </del>			
-		╁	$\dagger$	<del> </del>		1		<del>                                     </del>		<del>                                     </del>	1		<del>                                     </del>	
$\vdash$	Ĺ	$\dot{\parallel}$	$\dagger$	_	<u>'</u>	<u> </u>		<del>                                     </del>	<del> </del>	<del> </del>	<del> </del>	<u> </u>	1	
$\vdash$	-	$\dagger$	T	<del>i -</del>	<del> </del>	<del>                                     </del>	<del> </del>	<del>                                     </del>		<del>†</del>	+		<del> </del>	
UN	ITS:	TE	MPER	RATI	JRE - DEGREE	S CELSIUSia	H = STANDARD UN	ITS/SPECIFI	C CONDUCT	TANCE = UN	/HOS/	CM	<u>.</u>	<u> </u>
_	_						TURATED CASING.						6" = 7.35	
_	_	_					= 4.41 PROVIDED							Ĭ

Poper to water Measured 10 2 1 2-inch ID pue selected

of Sterox (2-inch pue

SAMPLOG.XILS

					nvironmenta	M.	រៈ ២ ១៩៦ នៅទូរម៉ែន						Paga 1 o	f /	
					540		Date: 3/4/9	7	Sampler(s):	600.	<u> 1</u>	ooel	)		
					0027		Facility Address:					<u></u>			
Ne	the	r: U	ابعا	600	+ 703 F	•	Sampling Method:	Tetlon Bailer	4 (A) O11	ner //			SOP Cleaning	Ø N	
2on	nme	nts:		حسا	ell deur	looment:	Proch 2	salloss	7-10- w	ell usi	~	peristallic	purp a	d	
		44	100	. +	ubing e. U	seel no	Mary 2	# 1-y	son tab	in for	dr.	repone	£,		
			,		ð					0					
¥(1,1)	GB	Ox 9V	OW	TFF	SYSTEM PER	FORMANCE A	NO QUALITY CONT	BOIL SAMPL	FS		00000	TESTOPARAMI	FTERS	deresa i serie	sodtav kad
_		7	0	-		Time	Source	он	Temp.	Sa. Cana.		Test Method	T	-	
<u> </u>	•	12	-		Sample (U	i iiiie	<del> </del>	l pr	i cino.	Ja. Cana.	<u></u>	I est Method	Container Type	Preserv. Ev	.0.
		<u> </u>	<u> </u>			<del> </del> -	GWS Influent	<del> </del>	<del> </del>	1	1		<u> </u>	ļ	
		_	<u> </u>			<u> </u>	GWS Elliuent	<del> </del>	!		3	<u> </u>	<u> </u>	<del>-</del>	
_		<u>L</u>	1				Equipment Blans	<u> </u>	<u> </u>		C	<u> </u>	<u> </u>		
		<u> </u>					Equipment Stant	<u> </u>			0	<u> </u>	1		
		<u> </u>					Tna Blenk				ε		<u> </u>	1.	
	}	1				1	Ougricare ( )		<u> </u>			1	<u> </u>		
			Ī				Quancace ( )	Į					]		
, K.)	GR	CEA	Đ.V/	TE	SAMPLES						ΤD	Csg Dia (in)	DTW	Purge	: Val
-	1	Ť	Ī			1		1	T		1/1	1"	D 2-		
	<u> </u>	<u> </u>	<u> </u>		PZ-3.	8:45	1	1	21.3	ı	14'	<i>    "</i>	8.37	1289	<u></u>
	<u> </u>	_	1	_	<u> </u>	8:55	1		19,7	320		<u> </u>	<u> </u>	-	
	<u> </u>	<u> </u>	<del> </del>			9:65	<u> </u>	6.99	19.4	290	<u> </u>	<u> </u> 	<u> </u>	+	
		<u> </u>	<u> </u>	<u></u>		<u> </u>		<u> </u>		<u> </u>		<u> </u>	<u> </u>	1 1	
	l												<u> </u>		
		Ī	Ī			1.1	1 1/	X./. ,	1.7/	1		$\nu$			
		+-	<del> </del>	-	<u> </u>	1 11/2/2	Lisually	11861	are	oevel e	PM	and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th	1		
		1					i i	`}	1		i		<u> </u>		
	Π					7/1	dept of	0	b	1	1	14111	1		
	<del> </del>	╁	<del>!</del>	<u> </u>	<u> </u>	1000	garby 02	luer	" Mas	ined a	-	77 015		+	
			1						<u> </u>						
					}								1		
	<del> </del>	-	╁	<u> </u>	<u> </u>	<del> </del>		1	<u></u>	<u> </u>	<del>!          </del>	1	<u> </u>		
		<u> </u>				<u> </u>	1	<u> </u>			<u> </u>	1			
				ļ	}	1			1						
	<del></del>	╁	<del></del>	<del>                                     </del>	1	<u> </u>	<del> </del>	<u> </u>		<u> </u>	†	<u>'                                      </u>	<del> </del>		
	<u> </u>	<u> </u>	ļ					<u> </u>	ļ		<u> </u>	<u> </u>	<u> </u>		
				ļ							1	1		1	
	ī	Т	T	Ι	1	ļ	<del>                                     </del>	1	İ		<u> </u>		i i	<u> </u>	
	<del>!      </del>	<del> </del>	<del> </del>	<u> </u>		<u> </u>	1	<del>}</del>	Į	<del> </del>	<u> </u>	1	-	+	
	-				1		1								
-	Π	T	Ī												
	<del>!     </del>	┼-	+-	1 -	<u> </u>	1	<del> </del>	+	<del> </del>		<del> </del>	1	<u> </u>	+	
_				<u>L</u>	<u> </u>				1	<u> </u>					
				Ī										-	
_		+	+	┼	<del> </del>	<del>-  </del>	<del> </del>	<del></del>	<del> </del>	<del>                                     </del>	<del> </del>	+	<del>'</del>		
					<u> </u>			<u> </u>			<u> </u>	1	<u> </u>	1	
													-	1	
-	<del>! - </del>	<del>!</del>	╁	$\vdash$	<del>                                     </del>	+	<del></del>	<del> </del>	<del>†</del>	-	<del> </del>	<del> </del>	<del></del>	1	
_	<u> </u>	1	╀-	<u> </u>			<del> </del>	-	ļ			1	1		
	<u> </u>	_	<u> </u>								<u> </u>		<u> </u>		
										1					
 N	ITS:	: TEI	MPER	RATI	JRE - DEGREE	S CELSIUS/o	H = STANDARD UN	ITS/SPECIFI	C CONDUC	TANCE - UM	HOS/	СМ			
_							TURATED CASING.						6° = 7.35	1	
							= 4.41, PROVIDED								

Next to groundwater taken From porterside of top of Stone cosing (2.:.eh pri)

0.10 Planch pue strave

					vironmental								Page ) of	
					540		Date:   Sampler(s): Gara/6 Goods Facility Address: Paniana City, FL							
lient	Sic	e 10	: C	. ( (	0017		Sampling Method: Tetlon Bailer Y (N) Other SOP Cleaning (Y) N							
veath	er:	0	عص	- 2	14 70° 1	1.	Purpel Zgalluns from well using paristelliz prop Parkel Zgalluns from well using paristelliz prop 1 now Section of trees to bring							
mmc	ien	<u>rs:</u> T		<u> </u>	y daver	ano la	11 000	23611	£ 1	· + 6.	<u></u>	7	201712	from -
	0	11		7,	101 7521	<del>~~</del>	118 W 75	21-101-1	7-775	1000	7			
	-					· · · · · · · · · · · · · · · · · · ·								
		- 20	معمده	750	CVCTEM PERE	GRMANCE A	ND QUALITY CONTE	ROUSAMPU	es:	05/7485320088.		TEST PARAME	TERS	
	-		T-1-I	7		Time	Source	рН	Temp.	Sa. Cand.		Test Method	Container Type	Preserv. Type
<u> </u>	1	c l	의	=	Sample ID	l inte	<del></del>	, jr	1 21110.	30. 00.0.	<u> </u>			1
4				-			GWS Influent				9		<del> </del>	<del> </del>
<u> </u>	$\rightarrow$		¦				GWS Effluent				-		<del> </del>	<del></del>
+	-	{	-				Equipment Blank				6	<u> </u>	<del></del>	<del> </del>
	4		_			Sacrata de marcas	Edwarrent Blank				-		<del> </del>	<del> </del>
<u>.</u>	_	¦				2000-yaana 2000-			000000000000000000000000000000000000000	(000000 - 100000000000000000000000000000		<u>'</u>	<del> </del>	<del> </del>
<u> </u>	4			-	<del></del>	<u> </u>	Ouphcate ( )		<del> </del>			<u>!</u>	1	<del> </del>
	_1	لِـــا			10 1 1 1 1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	200000000000000000000000000000000000000	Outreste (			6.00.0000.000000999	TD	L Con Din Gol	DTW	-
୍ତ	RC	XUP\E	ZVV/	TE	SAMPLES				T	1		Csg Dia (in)		Purge Vol
					PZ-3	9:10		7.01	20.3	204	114,	1"	8.64	2 gal
						9:20		7.00	19.6	199.9	<u> </u>			
						9:35		6.99	19.2	191			<u> </u>	
Ť	Ī													
+	-	_	<del>!</del>	-	1		1		1	<u> </u>				
			1	<u>                                     </u>	1	1	<del> </del>	ļ	<del> </del>		<del>                                     </del>	<u> </u>	<del> </del>	<del> </del>
1				!	<u> </u>	<u> </u>	1	<u> </u>		1	<del>                                     </del>	1	<u> </u>	-
				_			<u> </u>		1			<u> </u>	<u> </u>	
					·									
-	_	$\vdash$	1	<del> </del>										
 		<u> </u>	<u> </u>	_	1	7	1 // //	<del>\</del> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0	<del>                                     </del>	┼	V	<del>                                     </del>	
		_	<u> </u>	<u> </u>	Wa	La (135	4.14 Chen	4 47	1 00	religion	<del>+~</del>	7	1	
						İ	/			<u> </u>	<u> </u>	<u> </u>	<u> </u>	
T		Г	1	Ī	704		2 2	عاووا	Ma	some	4	1416	/ (	ļ
		┼	╁	┼╌	1 100	T wer		The same	1			1	1	
Ļ	_	L	<u> </u>	<u>                                     </u>		<u> </u>	ļ		ļ	ļ	<del> </del>	<u> </u>		
						1			1		<u> </u>			
İ	_	Г	Ī	1										
		1	+-	+	<del> </del>		<del></del>	<del> </del>	<del>                                     </del>	<del> </del>	Ť	<u> </u>	1	
1.		_	_	_				1	-		-	1		
								<u> </u>						
			T	T										
H	_	-	t	÷	<del> </del>	1	<del> </del>	<del>                                     </del>	<del> </del>	i	<del>                                     </del>		1	
		<u> </u>	<u> </u>	1		<u> </u>	ļ	<del> </del>		<del></del>	╬	1	<del>-                                    </del>	
$\Box$		T	T	Τ	T T		1							
		+	┿	┿	-	<del></del>	<del></del>				╁			
Щ	_	_	1	$\perp$			ļ <u>-</u>				+-			
		$\top$	T											
Н	-		$\dagger$	+	1									
110	Te	. TE	MOG	- A	URE - DEGRE	ES CELSIUS!	H = STANDARD U	NITS/SPECIE	IC CONDUC	TANCE - U	MHOS	I/CM	_ <del>'</del>	
							TURATED CASING.						/ 6" = 7.35	1
							= 4.41, PROVIDED							1

Rept to grow bush Measured from noth side of top of Sleeve Casing (2-inch puc)

2:nch por Storve

SAMPLOG.XLS

Prote			_	-047		Facility Address:	6:1. 20r	100	tal Sus	Tana	Station		
	13:		$\mathcal{I}'$	0027	.0/	Sampling Method:						200.0	
ather:		<u>سح</u>	25	cost 65		Samoling wethou:	enon baner	. <u> </u>				SOP Cleaning	ON
mment	3:							<del></del>	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	42	on Tubin	<del>9</del>	
						<del></del>							
	_	_				<del></del>			do in contratt and a	2.000			
					IRMANCE A	NO:QUALITY CONT	ROUSAMPO						
131	c I	οl	<u> </u>	Sample 10	Time	Source	он	Temo.	Sa. Cand.	ليسا		Contamer Free	Avenue, Tree
ĪĪ	Ī	ī	Ī			Cws innuent	1			<u>                                     </u>		<u> </u>	1
TT	Ī	1	ī	į		CM2 EMPONI		l	<u> </u>	3		<u> </u>	1
11	Ī	i	Ī			Equament 31ans	1	<u> </u>	<u> </u>	101		1	
T	1	1	1			Eswament Bent	<u> </u>	1	·	0		<u> </u>	
ĺί	ī	i	Ī			The Bent	100000	Maria productive	est viet			<u> </u>	-
11	1	ł	!	1		040-2010 1	1	l			·		
1 1	ī	_;	i				1					i	
CRC				SAMPLES	80.79 <b>38</b> (36),45	eelostrukele (PD)	Own Gray Could			73	Cág Dia (m)	07W	Purge Vol
1	=	_					1	1		14.9		8.83	6 sellons
1 !	3	<u>ه ه</u>	-	Muo1 - 20		<del></del>	1	1.0		1		1	1 34/8/
					14:45	<u> </u>	6.94	20.9	409	1			
1 !			1		 i	1	}	1					
+	-	_	<u>'</u>		<del></del>	<del>                                     </del>	<del></del>	İ	1	!	[	T	
			<u>i</u>	!	!	<del>!</del>	<del></del> -	<del></del>	<del></del>	<u> </u>	<u> </u>	1	<del></del>
1			į	1					1	<u> </u>	!	<u> </u>	
<del></del>		<u> </u>	!	i	!	i				į	1	1	1
ــــــــــــــــــــــــــــــــــــــ		<u>.                                      </u>	<u>! ·                                    </u>	<u> </u>	!	<del></del>	<del></del>	<del></del>	<del></del>	<del>: -</del>	<u> </u>	Ī	<del>-i</del>
İ		Ì	1	!	<u> </u>			<u> </u>	<u>i</u>	<u>i</u> _	<u> </u>	<del> </del>	
Τ		i	1		1						i		
<del></del>	<u>:</u>	1	<del>-</del> -	1	1	ī	1	1	Ī	<u> </u>	i		
	_	_	<u> </u>	<u> </u>	!	<del></del>		<del></del>	<del></del>	<del></del>	<del></del>	<del></del>	<del></del>
İ	i	İ	1	!	1	1				<u>:</u>	<u>!</u>	_!	
i	ļ	Ī	İ	1	į	1				!		}	
	<del></del>	┿	<del>-</del> -	1	<del></del>	<del></del>	<del></del>	<del></del>	<del></del>	į -	Ī	i	Ī
. !		<u> </u>	<u> </u>			<del></del>		<del></del>	<del></del>	<del></del>	<del> </del>		
1.	!	Ì		i						!	\	1	
Ť	<del> </del>	Ť	÷-	<del></del>	1					-	1	i	ţ
<u> </u>	<u> </u>	<u> </u>	÷		<del></del> -	<u> </u>		<del></del>		+-	- <del></del>	<del></del>	i
ì	ļ	1	1	i	<u> </u>	i				<u>i</u>	<del></del>		
$\neg \vdash$	Ī	i	T	I		i	1				1		
<del></del>	+	÷	t	<del> </del>	i	<u> </u>	<del></del>		-	İ		1	
	1	1	_	!	1	<del>-                                    </del>				<del>-</del>	<del></del>		<del></del>
									1	i			
T	T	ī	T	1	1	1				1			
	+	<del>-</del>	+	<del></del>	<del></del>	<del></del>		<del></del> -	<del></del>	<del>-</del>	<del></del>		
					1	_!				<u></u>			
		1	1	-				1					
+	÷	÷	+	<del></del>	<u> </u>		<u> </u>						
	+	4	<u> </u>	<del>-                                    </del>						<del></del> -		<del></del>	<del></del>
										!			
	T	T	1	<u> </u>									
	+	- 1	+	<del></del>	1	<del></del>	<del></del>	<del></del>	<del></del>		1	1	
		_		1									<del></del>
LINETS		110	===	TURE - DEGRE	EES CEUSIUS	ORAGNATE . HON	UNITS/SPEC	FIC CONOL	CTANCE =	UMHO	\$/C:M		

					<u> </u>		Oace: 4/23/			Jahn 4	72.8	3/ <del>5/</del>		
nt	Sic	د اع	: (	1	0027	<del></del>	Facility Address:		S Coar	m 3,5	fam 5	Shelia		
211	er:		مان	c (	st 650	F	Sampling Method	Tellon Bailer	Y N Oth			z	SOP Cleaning	Ø N
nn	ren	rs:								<del></del>	المكا	en Tubi	145	
_										<u>·</u>			9	
_														
_	_		_				<del></del>							
G	20	***	24/	TER	SYSTEM: PER	GRMANCE A	NO:QUALITY:COM	MROUSAMPL	S	900 (38) (80) (80°	200	TET PARAM	ETERS	
T	3 İ	ا ع	٥ ا	= 1	Sample 10	Time	Saurce	) oH	Temo.	Sa. Cand.		Test Memory	Contamor From	Prasery, Type
ī	ī						GWS innuent	1	<u> </u>					1
ī	ī					i	CM2 EHPON		<u> </u>		3		1	
Ī	Ī				·	<u> </u>	Equament Hone	<u></u>	<u>!</u>	<u>                                     </u>	<u> </u>			1
1	1						Ezwament Blanc				] 3	!	<u> </u>	
Ī	1		į				Tra Bent	PS-Bedale		Sept. 11 (1997)	<u> </u>	<u> </u>	<del></del>	1.
1	Ī		1				0	,	<u> </u>			<del>! ·</del>	<del>!</del>	
Ī	1		İ	<u> </u>		1	Tuescare 1	<u>.  </u>	<u> </u>	<u> </u>	<u>.                                    </u>	! 		<u> </u>
:: (	<u> </u>	-	574	A. F. E.	SAMPLES	4744753 <b>38</b> )		no-baran			1 73	Csg Dia tini	W76 1	Purge Val
T					MW01-				1	1	14.9	1	8.79	6 gellons
÷			<u> 50</u>	<u>-0</u>	MUDI		<del> </del>	1-				1		36/1041
-	_		<u> </u>	<u> </u>		15:30	!	7.0	21.3	324	!	<del> </del>	!	
Ī			Ī								!			
+	_	1	i	i		1	1	1	1	1	Ī	1	T	1
1		!	i	_		!	<del></del>		1	1	i	<del></del>	1	<del></del>
ĺ			1	İ		\	İ	<u> </u>	]	1				_\
1	_	<del>-</del>	!	1	1	1		-	[		į		i	
<u>.</u>	_	<u> </u>	÷	<del>¦:</del> -	<u> </u>	<del></del>	<del>;</del>	<del></del>	<del></del>	<del></del>	÷	<u> </u>	<del></del>	<del></del>
i		!_	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1		<u> </u>	<u> </u>	!	<u> </u>		
-			-	T				İ			Ì	į		\
÷		<del>-</del>	1	╁	<del></del>	i	1		1	Ī	-	i	i	
_		<u> </u>	<u>:</u>	Ļ	<u> </u>	<del></del>	<del></del>		<del>!</del>	<del></del>	<del></del>	<del>'</del>		<del></del>
İ		1	į	į	!	]	ļ		!	<u> </u>	:	!		
1		Ī	1	ī	!				i		1		ì	ļ .
	-	<del> </del>	<del>-</del> -	<del>-</del>	1	<del></del>	<del></del>	<del></del>	1	<del></del>	ì		1	
_	_	L	!	<u> </u>	<u> </u>		<del></del>	!			<del>!</del> -	<del></del>	<del></del>	
1		1	i				}	1			!		i	
_	_	<del>†</del>	i	Ť	<del>`</del>	<u> </u>	1			T	-	1	1	
	<u>!</u>	<u> </u>	!	<del>-</del>	<del>!</del>	<del></del>	<del></del>	<del></del>	<del></del>	<del></del>	÷	<del></del>	<del></del>	
		ļ	į								<u>i</u>			!
	Π	Ī	Ţ	1	1				1	1		1		
_	+	+	+	÷	<del>`</del>	<del></del>	<del></del>	<del></del>	<del></del>	<del></del>	i	<del></del>	1	
	L		İ	1	<u> </u>		<del></del>	<u>·                                    </u>	<del></del>			<del></del>		
			-											
_	i	i	i	Ť	1	T	1		1	1	1			1
	+	Ļ	_	<u> </u>	<del>!</del>	<del></del>	<u> </u>	<del></del>	<del></del>	<del></del>	<del>-</del> -	<del></del>		<del></del>
		-		1			<u> </u>		1	1				
_	T	ļ	T	T	1				}		į			
_	+	1	1	+	<del></del>	<del></del>	<del></del>	<del></del>	<del></del>	1	<del>-</del>	<u> </u>		
_	1	1		1								!		
	1		Ī		1	1		}			İ			
-	÷	÷	+	÷	<del></del>	<del>-                                    </del>	<del></del>	<del></del>	<del></del>	Ti Ti	Ī		T T	
_	1	_	1	1							<u></u>			
	ļ		1	}					1		_		1	
_	_	_	_				om = STANDARO							

					740		Date: 4/23/			John	<u>سو</u>	OSLan		
nτ	Sice	: 13	:	2	0 0027		Facility Address:			A	<del></del>			
ונח	er:	_	٧٠	er (	ost 650	<u> </u>	Sampling Method:	Tetlon Bailer	Y 69 Ot	er Keris	<u> </u>	20	SOP Cleaning	Ø N
	ent								<del></del> -	- Puna	<u> </u>	yses Tub	11~5	
										<del></del>			<i>t</i>	
	_													
_	_	_	_							000, 01000000000000				
							NO: QUALLETY: CONT	ROL SAMPL					TERS	
3	1	<u>د ا</u>	٥	=	Sample 10	Time	Source	ЭН	Tema.	Sa. Cana.		Test Memor	Contamor Tree	Preserv, Type
	ļ	Ī					GWS Innuent			<u>!</u>	1	<u> </u>	!	1
<u> </u>	i	-					G~S EHWAN	<del></del>		<u> </u>	3	<u> </u>	<u> </u>	
_	1	_		!	<del></del> ;		Equament 3tans	<del></del>		:	c	<del> </del>	!	
<u>!</u>	<u> </u>	!			1		Eswament Blank	<u> </u>	l Made menyi dia uru			<u> </u>	1	<del> </del>
_	_		_	<u> </u>		7 (* 1887 <b>/ 20</b> )	<del></del>		800-00 WWW.	l .	<u>: -</u> -	<u>'</u>	1	1
<u> </u>	÷	_	-	<u> </u>			Oup-care ( )	<del> </del>	<u></u>	<del> </del>	:	<del>.</del>	1	<del></del>
_			!	1			<b>Co-co: !</b>		( (10)30-0-140120		1 50	L Cép Sia (ro)	1 orw	1 9
_	30			A.T.E.	SAMPLES	Ostory with section	<ul> <li>Anni Missorian descentation (Method)</li> </ul>	1	(Control of the Assessment					Purge Val
	1	3	OC	-	MW03-00	1 10:28	<u> </u>	<u> </u>			M 7	2"	8.83	<u> </u>
Γ	į		İ	1		14:45	ļ	6.71	19.8	205			1_	6 gallas
H	÷	_	ī	<del>i</del>	<u> </u>		i		· ·		[	[		7
Ļ	÷		<u>:</u> -	<del>!</del>	<u>!</u>	<u>'</u>	<del></del>	<del>`</del>	<del></del>	<del>'</del>	<del></del> -	i i	<del></del>	<del></del>
L	!	_	!	<u>i</u>		!	<del>!</del>	<del>!</del>	<del> </del>	<del> </del>	<del>!</del>	!	<del> </del>	<del>!</del>
ĺ	1			İ	1						i	1	<u> </u>	
Ť	i		ī	ī		!	i		1					
Ļ			<del>!</del> -	<del>;</del> -	<del> </del> -	<del></del>	<del></del>	<del></del>	<del></del>	<del>'</del>	<del></del>	<del></del>	<del></del>	<del></del>
1	!		_	<u>!</u> _	<u>!</u>	<u>!</u>	<del>!</del>	<del></del>	1	!	<del>-</del>	!	<del>!</del>	<del></del>
-	!		į	ŀ		!	<u> </u>		<u> </u>	<u> </u>	:			
1	1		-	T		1	!	1	}	1	1			ļ
÷		_	÷	<del>-</del>	<del></del>	<del>i</del>	1	<del></del>	<del>i</del>	i	:	!	1	
1			<u>!</u>	<u> </u>	<del>!</del>	<del></del>	<del>!</del>	<del></del>	<del></del>	1	<del>-</del> -	<del></del>		<del></del>
	i		ļ	ļ		<u> </u>		1		!		<u> </u>		<u> </u>
T	į	i	ī	Ī					ļ		Ì			
÷		_	<del>:</del> -	÷	<del>:</del>	ì	i	<del></del>	Ī	1	i	i	i	1
<u>.</u>	!	<u> </u>	<u>!</u>	÷	<del></del>	<del>!</del>	<del></del>		<del></del>	<del></del>	<del></del> -	1	<u> </u>	
İ			!	_			<u>!</u>			<u> </u>	<u>!</u>	<u> </u>		
1			1	1					1		i			
Ť	_	<del>-</del>	Ì	Ť	<del>`</del>	<del></del>	1	1	T	1		1		
+	_	<u>!</u> _	+	<del> </del>	1	<del></del>	·	<del></del>	<del></del>	<del></del>	÷	<del></del>	<del></del>	<del></del>
1		_	i	1	<u> </u>	<u> </u>	<u>!</u>		<u> </u>		<del></del>		1	
			ļ								· l	<u> </u>		
Ī	_	1	ī	ī	1	1	1	T						
-		-	+	+	+	1	<u>.</u>	<del></del>	<del></del>	<del></del>	<del></del>	<del></del> -	- <del>i</del>	
1	_	1	1		<del> </del>	<u>!</u>	!		<del></del>	<del></del>		-	<del> </del>	
		i			İ				1					
1	_	1	T		1		1		1					
	-	+	$\frac{1}{1}$	+	<del></del>	<del> </del>	<del></del>	<del></del>	<del></del>	<del></del>	<u> </u>	1	1	
<u> </u>		Ļ	4	1.	<del></del>		1							
		1					!							
Ī		1	i	1	1									
. 1					TURE - DEGRE									

	7540		Date: 4/23/97		Sampler(s):	John L	-4 N	<u> </u>		
ent Site IO:	CTO 0027		Facility Address: 5	ile 300	2 40 2	0!	. 71			
ather: Oue	reast 650	E	Samoling Method: T	effon Barier	Y MY Oth	O POPEL A	द्रम	<u>.                                    </u>	SOP Cleaning	(D) N
mments:			<del></del>		<del></del>	- Pump	4 (	75ea 1	ISOP Cleaning	
			·							
	750 540 540 2520	CEMANCE	NO QUALIFICONTI	ON SAMPLE	Socialization	0.000	2002	PARAM	FTFR	errose en Source
		Time	Source	он		Sa. Cana.			Container Free	
1316101	E   Sample 10		GwS innumi				1			1
! ! ! !			CM2 Ellines	<u>.                                    </u>			3		<del></del>	<del>'</del>
1 1 1	<u> </u>		Equament Hans				c I		1	<del></del>
<del></del>			Edwarment Blank	i .			3 1		1.	
<del>'                                    </del>	1	promiser (a.F	Tre Berry	160 B 160 N	MACE DAMAGE	Million et et	<u> </u>		1	1.
1 1 1		i	Dua-cate !	1			<u>                                     </u>	·		
1 1 1	i	1	Commercial (				-		<u> </u>	
:: GRCTAEW	ATER SAMPLES	10000000000000000000000000000000000000		y Konamana		Olim Sain	ן כז ן	Csq Dia lini	l orw	Purge Val
	- mud - sol	1	Ī	]			14.8	2"	7.28	7 gallon
1 200	- pwor wi		i	7 17-	2. 2	241	1			1
<u> </u>	1 1	1330	<del> </del>	1.11	20.2	476	1	<del></del>	<del>'</del>	<del></del>
	l i	<u> </u>			!	1	<u>!</u>	<u> </u>	<del> </del>	
!	1	i		1	}					
+++	<del></del>	i	1				1	1	1	
1 1 1	1 1	<del>!</del>	<del>'</del>	<del></del>	<del>'</del>	<del>`</del>		!	i	i
	<u>                                     </u>	<u>i</u>	!	<u> </u>	<u> </u>	<del> </del>	<del></del>	<u> </u>	<del></del>	<del></del>
		i				<u>i                                     </u>	<u>i</u>	<u> </u>		
111	1 1	1		Ī	-			1	ļ	
<del></del>		<del>`</del>	<del>i</del>	<del></del>	<del></del>	!	<del></del>	i		
	<u> </u>	<del>!</del>	<del></del>	<del></del>	<u> </u>	:	<del></del> -	<u> </u>	<del>-                                    </del>	1
		<u> </u>		<u> </u>	!	<u> </u>	<u>:                                      </u>	!	<del>-!</del>	
	1 1	1		1			!			
<del></del>	<del>                                     </del>	T	<del> </del>	1						
	1 !	1	1	<del></del>	<del> </del>	<del> </del>	<del></del>	<del></del>		
111	<u> </u>	<u> </u>	<u> </u>	<del></del>	<u> </u>	<del></del>	<del></del>	<u> </u>		
			!		1	<u> </u>	!			
TIT	T		1				1	İ		ļ
<del></del>	<del></del>	<del> </del>	<u> </u>	1	1	1		1	1	
	1 !		<del></del>	<del></del>	<del></del>	<del></del>	<del></del>	<del></del>	<del></del>	
			<u>. !</u>			<del></del>	<del></del> -	<u> </u>		
									<u> </u>	
111	T	1	1				1			
- 1 1 1	1 1	<del></del>	<del></del>	<del></del>	<u> </u>	<del></del>	<del></del>	T	1	
						<del></del>		<del></del>		
		<u> </u>			1	1			!	
	11	<del></del>	<del>-                                    </del>	i	1	1	T			
	1 1		_ <del> </del>		<u> </u>	+	<del></del>	1	<del></del>	<u> </u>
						1	_!			
			1					<u> </u>		
<del></del>	53:7:05 - 0603	ES CELSIUS	U ORAGNATZ = ha	NITS/SPEC	FIC CONDU	STANCE = 1	MHCS	/CM		<u>:</u>

### **APPENDIX L**

### SLUG TEST DATA AND HYDRAULIC CONDUCTIVITY CALCULATIONS

### HYDRAULIC CONDUCTIVITY GEOMETRIC MEAN

The Bouwer and Rice methodology for partially penetrating wells in unconfined aquifers was utilized to calculate hydraulic conductivity values for the three wells (Bouwer, 1989; Bouwer and Rice, 1976). Calculations were performed using the Aqtesolv™ aquifer characterization program (Duffield and Rumbaugh, 1991). The slug test data and Aqtesolv™ results are included in this appendix. Hydraulic conductivity (K) values in the aquifers immediately surrounding the monitoring wells were calculated to be:

PCY-300-MW02 = 
$$0.005074$$
 feet/min =  $2.58 \times 10^{-3}$  cm/sec  
PCY-300-MW03 =  $0.01451$  feet/min =  $7.37 \times 10^{-3}$  cm/sec  
PCY-300-MW04 =  $0.004891$  feet/min =  $2.48 \times 10^{-3}$  cm/sec

The average hydraulic conductivity was determined by calculating the geometric mean of the three values as follows:

$$= e^{\left[\frac{\ln x_1 + \ln x_2 + \ln x_n}{n}\right]}$$

$$= e^{\left[\frac{\ln x_1 + \ln x_2 + \ln x_3}{3}\right]}$$

$$= e^{\left[\frac{\ln (0.005074 \text{ ft/min}) + \ln (0.01451 \text{ ft/min}) + \ln (0.004891 \text{ ft/min})}{3}\right]}$$

$$= e^{\left[\frac{-14.84 \text{ ft/min}}{3}\right]}$$

$$= 0.007114 \text{ ft/min}$$

$$= 3.61 \times 10^{-3} \text{ cm/sec}$$

$$= 10.24 \text{ ft/day}$$

### SLUG TEST METHOD FOR UNCONFINED AQUIFERS

REFERENCE:

Bouwer, H. and R. C. Rice, 1976. A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resources Research, vol. 12, no. 3, pp. 423-428.

### **SOLUTION:**

 $\ln s_o - \ln s_t = \frac{2 K L t}{r_o^2 \ln(r_o/r_w)}$ 

where:

s_o = initial drawdown in well due to instantaneous removal of water from well [L]

s,= drawdown in well at time t [L]

L = length of well screen [L]

 $r_e = radius of well casing [L]$ 

 $ln(r_{\bullet}/r_{\bullet}) =$  empirical "shape factor" determined from tables provided in Bouwer and Rice (1976)

r_e = equivalent radius over which head loss occurs [L]

r_= radius of well (including gravel pack) [L]

H = static height of water in well [L]

b = saturated thickness of aquifer

## SLUG TEST METHOD FOR UNCONFINED AQUIFERS (continued)

### **DEFINITION OF TERMS:**



```
SE1000B
Environmental Logger
06/28 13:22
   Unit# 00061 Test# PCY-300-MW02
INPUT 1:
              Level (F)
                             TOC
Reference
Scale factor
Offset
                        14
0
                            .83
.90
.13
Step# 0
              04/25
                        09:31
Elapsed Time
                       Value
```





AQTESOLV



<<<<<<<<<	<<<<<<<<	·>>>>>>>>>>>>>>	>>>>>>>>>
3	0 11 11 11 11 11	C !! ! M C	

### AQTESOLV RESULTS Version 1.10

06/28/97	16:03:01

TEST DESCRIPTION

Data set........ G300MW02.DAT Data set title.... PCY-300-MW02

06/28/97

Knowns and Constants:
No. of data points,
Radius of well casing
Radius of well
Aquifer saturated thickness
Well screen length
Static height of water in well
Log(Re/Rw)
A, B, C

ANALYTICAL METHOD

0.398,

0.000

Bouwer-Rice (Unconfined Aguifer Slug Test)

RESULTS FROM VISUAL CURVE MATCHING

 $K_{y0} =$ 

VISUAL MATCH PARAMETER ESTIMATES

### TYPE CURVE DATA

K = 5.49772E-003y0 = 2.98104E-001

Drawdown Time Drawdown Time Drawdown Time 0.000E+000 2.981E-001 1.000E+000 1.401E-004

### TYPE CURVE DATA

K = 5.07411E-003y0 = 2.93066E-001

Time Time Drawdown Time Drawdown Drawdown 0.000E+000 2.931E-001 1.000E+000 2.485E-004

SE1000B Environmental 06/28 13 Logger Unit# 00061 Test# PCY-300-MW03 יטד 1: Level (F) TOC .9 .9 Reference Scale factor Offset 840 403 1 Step# 04/25 10:32 0 Elapsed Time Value 



 <<<<<<<<<<<<<<<<<<<><<<<<<<>>>>>>>>>
06/28/97 16:29:48
TEST DESCRIPTION
Data set G300MW03.DAT Data set title PCY-300-MW03
Knowns and Constants:  No. of data points,
ANALYTICAL METHOD
Bouwer-Rice (Unconfined Aquifer Slug Test)
RESULTS FROM VISUAL CURVE MATCHING
VISUAL MATCH PARAMETER ESTIMATES  Estimate  K = 1.4465E-002

Estimate K = 1.4465E-002 y0 = 0.0000E+000

### TYPE CURVE DATA

K = 1.45114E-002y0 = 3.98452E-001

Time Drawdown Time Drawdown Time Drawdown
0.000E+000 3.985E-001 5.000E-001 1.660E-005

SE1000B Environmental Logger 06/28 13:20 Unit# 00061 Test# 1 PCY-300-MW04 INPUT 1: Level (F) TOC .29 Reference Scale factor Offset 7 14 0 Step# 0 04/25 10:06 Value 

## PCY-300-MW04



AQTESOLV



,

### VISUAL MATCH PARAMETER ESTIMATES

Estimate K = 4.8639E-003 y0 = 0.0000E+000

#### TYPE CURVE DATA

K = 4.89120E-003y0 = 1.44856E+000

Time Drawdown Time Drawdown Time Drawdown
0.000E+000 1.449E+000 2.000E+000 9.457E-007

### APPENDIX M

# GROUNDWATER GRADIENT, GROUNDWATER FLOW, AND TRANSMISSIVITY CALCULATIONS

### **GROUNDWATER FLOW GRADIENT**

The groundwater flow gradient was determined using the following equation:

$$i = \frac{h_1 - h_2}{d}$$

where:

i = the hydraulic gradient

h₁ = the water elevation at point 1

 $h_2$  = the water elevation at point 2

d = the distance between point 1 and point 2

The distance and groundwater elevations were obtained from Figure 3-1.

### April 23, 1997

The gradient across the site was calculated after constructing groundwater contours from the April 23, 1997, depth to water data, determining the perpendicular distance between two of these contours, and utilizing the following calculation:

$$i = \frac{1.63 \text{ ft} - 1.30 \text{ ft}}{47 \text{ ft}}$$

$$i = \frac{0.33 \text{ ft}}{47 \text{ ft}}$$

$$i = 0.01 \text{ ft/ft}$$



### **GROUNDWATER FLOW VELOCITY**

Potential movement of groundwater at the site may be described in terms of transportation by natural flow system in the saturated zone, assuming groundwater flow follows Darcy's Law. Darcy's Law may be expressed as:

$$V = \left(\frac{K}{n}\right) \times i$$

where:

V = average velocity

K = hydraulic conductivity = 10.24 ft/day

n = effective porosity (assumed) = 0.30

i = average hydraulic gradient = 0.01 ft/ft

therefore:

$$V = \left(\frac{10.24 \text{ ft/day}}{0.30}\right) \times 0.01 \text{ ft/ft}$$

V = 0.34 ft/day

### **TRANSMISSIVITY**

Transmissivity can be determined by multiplying the hydraulic conductivity by the effective aquifer thickness (be). The effective aquifer thickness is defined as depth to the top of the water table to (approximately 8 feet bls) to the top of a limestone of the Intracoastal Formation (encountered at CSS at depths of 48 feet and 63 feet bls) The transmissivity was calculated as follows:

#### where:

T = transmissivity

K = hydraulic conductivity = 10.24 ft/day

b_e = affected aquifer thickness = 48 ft

### therefore:

T = 10.24 ft/day x 48 ft

 $T = 4.92 \times 10^2 \text{ ft}^2/\text{day} \times 7.48 \text{ gal/ft}^3$ 

 $T = 3.68 \times 10^2 \text{ gal/day/ft}$ 

Note: Depth to Intracoastal Formation obtained from data presented in the RCRA Facility Investigation Report (ABB Environmental Services, Inc., 1995).

# APPENDIX N GROUNDWATER LABORATORY DATA SHEETS

τ.



### Technical Report for

Brown & Root Environmental

Site G300 CTO 0027

7540

Accutest Job Number: F582

### Report to:

C/O Paul Calligan
Brown & Root Environmental
1311 Executive Center Dr. Ste: 220
Tallahassee, FL 32301

ATTN: Arnold Lamb - QA Officer

Total number of pages in report: 35

Harry Behzadi, Ph.D. Laboratory Director

Results relate only to the items tested.

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories.



### Sample Summary

Brown & Root Environmental

Date: Job No: 05/12/97 F582

Site G300 CTO 0027 Project No: 7540

Sample Number	Collected Date	Time By	Received	Matr. Code		Client Sample ID
F582-1	04/23/97	11:45 GG	04/25/97	AQ	Ground Water	300-MW03-001
F582-2	04/23/97	13:30 GG	04/25/97	AQ	Ground Water	300-MW04-001
F582-3	04/23/97	14:45 GG	04/25/97	AQ	Ground Water	300-MW01-001
F582-4	04/23/97	12:30 GG	04/25/97	AQ	Ground Water	300-MW03-001B
F582-5	04/23/97	15:30 GG	04/25/97	AQ	Ground Water	300-MW02-001
F582-6	04/17/97	16:00 GG	04/25/97	AQ	Trip Blank Water	TRIP BLANK



### Report of Analysis

Page 1 of 1

Client Sample ID: 300-MW03-001

Lab Sample ID: F582-1

Matrix:

AQ - Ground Water

Method: Project:

**EPA 8100** 

Site G300 CTO 0027

Date Sampled: 04/23/97

Date Received: 04/25/97

Percent Solids: n/a

File ID DF Analyzed Вy Prep Date Prep Batch **Analytical Batch** I01447.D 04/25/97 NF 04/25/97 **OP83** 1 GIJ68 Run #1

Run #2

### **BN PAH List**

CAS No.	Compound	Result	RDL	Units Q
83-32-9	Acenaphthene	ND	10	ug/l
208-96-8	Acenaphthylene	ND	10	ug/l
120-12-7	Anthracene	ND	10	ug/l
56-55-3	Benzo(a)anthracene	ND	10	ug/l
50-32-8	Benzo(a)pyrene	ND	10	ug/l
205-99-2	Benzo(b)fluoranthene	ND	10	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	10	ug/l
207-08-9	Benzo(k)fluoranthene	ND	10	ug/1
218-01-9	Chrysene	ND	10	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	10	ug/l
206-44-0	Fluoranthene	ND	10	ug/I
86-73-7	Fluorene	ND	10	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	10	ug/l
91-20-3	Naphthalene	ND	10	ug/l
90-12-0	1-Methylnaphthalene	ND	<b>10</b>	ug/l
91-57-6	2-Methylnaphthalene	ND	10	ug/l
85-01-8	Phenanthrene	ND	10	ug/l
129-00-0	Pyrene	ND	10	ug/l
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
321-60-8	2-Fluorobiphenyl	74%		26-116%
84-15-1	o-Terphenyl	105 %		26-125 %

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank

N = Indicates presumptive evidence of a compound



### **Report of Analysis**

Page 1 of 1

Client Sample ID: 300-MW03-001

Lab Sample ID:

F582-1

Matrix:

AQ - Ground Water

Method:

FLORIDA-PRO

Project:

Site G300 CTO 0027

Date Sampled: 04/23/97

Date Received: 04/25/97

Percent Solids: n/a

Run #1 Run #2 File ID I01591.D DF

Analyzed By NF 05/02/97

Prep Date 04/30/97

Prep Batch **OP89** 

**Analytical Batch** 

GU73

CAS No.

Compound

Result

RDL

Units O

TPH (C8-C40)

ND 0.50

mg/l

CAS No.

Surrogate Recoveries

Run#1

Run#2 Limits

84-15-1

o-Terphenyl

84%

40-140%

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 2

Client Sample ID: 300-MW03-001

Lab Sample ID: F582-1

Matrix:

AQ - Ground Water

Method: Project:

EPA 601/602

Date Sampled: 04/23/97 Date Received: 04/25/97

Percent Solids: n/a

Site G300 CTO 0027

File ID EF002006.D Run #1

DF 1

Analyzed 04/25/97

By AW Prep Date n/a

Prep Batch

Analytical Batch

n/a GEF50

Run #2

#### **VOA PPL List**

CAS No.	Compound	Result	RDL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-25-2	Bromoform	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
74-83-9	Bromomethane	ND	1.0	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	ug/l
108-90-7	Chlorobenzene	ND	1.0	ug/l
75-00-3	Chloroethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
74-87-3	Chloromethane	ND	1.0	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	ug/l
124-48-1	Dibromochloromethane	ND	1.0	ug/l
75-71-8	Dichlorodifluoromethane	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethene	ND	1.0	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	ug/l
78-87 <b>-</b> 5	1,2-Dichloropropane	ND	1.0	ug/l
100-41-4	Ethylbenzene	ND	1.0	ug/l
75-09-2	Methylene chloride	ND	5.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	ug/l
79 <b>-</b> 01 <b>-</b> 6	Trichloroethene	ND	1.0	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l
75-01-4	Vinyl chloride	ND	1.0	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	ug/l
95-50-1	1,2-Dichlorobenzene	ND	2.0	ug/l
1330-20-7	Xylenes (total)	ND	3.0	ug/l
156-69-4	cis-1,2-Dichloroethene	ND	1.0	ug/l
540-59-0	1,2-Dichloroethene (total)	ND	2.0	ug/l

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank



Page 2 of 2

Client Sample ID: 300-MW03-001

Lab Sample ID:

F582-1

Matrix:

AQ - Ground Water

Method: Project:

EPA 601/602

Site G300 CTO 0027

Date Sampled: 04/23/97

Date Received: 04/25/97

Percent Solids: n/a

Run #1

File ID EF002006.D DF 1

Analyzed Ву 04/25/97 AW

Prep Date n/a

Prep Batch n/a

Analytical Batch

GEF50

Run #2

**VOA PPL List** 

CAS No.

Surrogate Recoveries

Run#1

Run#2

Limits

460-00-4

4-Bromofluorobenzene

93%

75-125%

B = Indicates that analyte is found in associated method blank

N = Indicates presumptive evidence of a compound



Page 1 of 1

Client Sample ID: 300-MW03-001

Lab Sample ID:

F582-1

AQ - Ground Water

Matrix: Method:

**EPA 504.1** 

Project:

Site G300 CTO 0027

DF

1

Date Sampled: 04/23/97

Date Received: 04/25/97

Percent Solids: n/a

File ID Run #1

AB01844.D

**Analyzed** 04/25/97

By NF **Prep Date** n/a

Prep Batch n/a

**Analytical Batch** GAB66

Run #2

Compound

Result

RDL

Units Q

106-93-4

CAS No.

1,2-Dibromoethane

ND

0.020

ug/l

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank



Page 1 of 1

Client Sample ID: 300-MW03-001

Lab Sample ID: F582-1

Matrix:

AQ - Ground Water

Date Sampled: 04/23/97

Date Received: 04/25/97 Percent Solids: n/a

Project:

Analyte

Site G300 CTO 0027

Metals Analysis

Result RDL Units DF Prep Analyzed By Method

Lead <0.0030 0.0030 mg/l 1 05/02/97 05/08/97 JK EPA 239.2



Page 1 of 1

Client Sample ID: 300-MW04-001

Lab Sample ID:

F582-2

Matrix:

AQ - Ground Water

Method:

**EPA 8100** 

Project:

Site G300 CTO 0027

Date Sampled: 04/23/97 Date Received: 04/25/97

Percent Solids: n/a

File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch	
I01448.D	1	04/25/97	NF	04/25/97	OP83	GU68	

Run #1 Run #2

#### **BN PAH List**

CAS No.	Compound	Result	RDL	Units Q
83-32-9	Acenaphthene	ND	10	ug/l
208-96-8	Acenaphthylene	ND	10	ug/l
120-12-7	Anthracene	ND	10	ug/l
56-55-3	Benzo(a)anthracene	ND	10	ug/l
50-32-8	Benzo(a)pyrene	ND	10	ug/l
205-99-2	Benzo(b)fluoranthene	ND	10	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	10	ug/l
207-08-9	Benzo(k)fluoranthene	ND	10	ug/l
218-01-9	Chrysene	ND	10	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	10	ug/l
206-44-0	Fluoranthene	ND	10	ug/l
86-73-7	Fluorene	ND	10	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	10	ug/l
91-20-3	Naphthalene	ND	10	ug/l
90-12-0	1-Methylnaphthalene	ND	10	ug/l
91-57-6	2-Methylnaphthalene	ND	10	ug/l
85-01-8	Phenanthrene	ND	10	ug/l
129-00-0	Pyrene	ND	10	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
321-60-8	2-Fluorobiphenyl	67%		26-116%
84-15-1	o-Terphenyl	97%	286 888 888	26-125 %

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank



Page 1 of 1

Client Sample ID: 300-MW04-001

Lab Sample ID:

F582-2

Matrix:

AQ - Ground Water

Method: Project:

FLORIDA-PRO

Site G300 CTO 0027

Date Sampled: 04/23/97

Date Received: 04/25/97

Percent Solids: n/a

File ID DF Analyzed Ву Prep Date Prep Batch **Analytical Batch** I01592.D 05/02/97 NF 04/30/97 **OP89** 1 **GU73** Run #1

Run #2

CAS No.

Result

Compound

**RDL** 

Units Q

TPH (C8-C40)

o-Terphenyl

ND 0.50

mg/l

CAS No.

84-15-1

Surrogate Recoveries

Run#1

97%

Run#2 Limits

40-140%

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank

Page 1 of 2

Client Sample ID: 300-MW04-001

Lab Sample ID:

F582-2

Matrix:

AQ - Ground Water

Method:

EPA 601/602

Project:

Site G300 CTO 0027

Date Sampled: 04/23/97 Date Received: 04/25/97

Percent Solids: n/a

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch EF002007.D 1 04/25/97 AW n/a n/a GEF50

Run #1 Run #2

#### **VOA PPL List**

CAS No.	Compound	Result	RDL	Units Q
71-43-2	Benzene	ND	1.0	ug/l
75-25-2	Bromoform	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
74-83-9	Bromomethane	ND	1.0	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	ug/l
108-90-7	Chlorobenzene	ND	1.0	ug/l
75-00-3	Chloroethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
74-87-3	Chloromethane	ND	1.0	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	ug/l
124-48-1	Dibromochloromethane	ND	1.0	ug/l
75-71-8	Dichlorodifluoromethane	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	2.2	1.0	ug/l
75-35-4	1,1-Dichloroethene	ND	1.0	ug/I
156-60-5	trans-1,2-Dichloroethene	ND	1.0	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	ug/l
100-41-4	Ethylbenzene	ND	1.0	ug/l
75-09-2	Methylene chloride	ND	5.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	ug/l
127-18 <del>-</del> 4	Tetrachloroethene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	ug/l
79-01-6	Trichloroethene	ND	1.0	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l
75-01-4	Vinyl chloride	ND	1.0	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	ug/l
1330-20-7	Xylenes (total)	ND	3.0	ug/l
156-69-4	cis-1,2-Dichloroethene	ND	1.0	ug/l
540-59-0	1,2-Dichloroethene (total)	ND	2.0	ug/l

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank



Page 2 of 2

Client Sample ID: 300-MW04-001

Lab Sample ID: F582-2

Matrix:

AQ - Ground Water

Method: Project: EPA 601/602

Site G300 CTO 0027

Date Sampled: 04/23/97

Date Received: 04/25/97

Percent Solids: n/a

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 EF002007.D 1 04/25/97 AW n/a n/a GEF50

Run #2

**VOA PPL List** 

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

460-00-4 4-Bromofluorobenzene 94 % 75-125 %

B = Indicates that analyte is found in associated method blank

N = Indicates presumptive evidence of a compound



Page 1 of 1

Client Sample ID: 300-MW04-001

Lab Sample ID:

F582-2

Matrix:

AQ - Ground Water

Method: Project:

EPA 504.1

Site G300 CTO 0027

Date Sampled: 04/23/97 Date Received: 04/25/97

Percent Solids: n/a

File ID Run#1 AB01845.D DF 1

Analyzed 04/25/97

Prep Date By NF n/a

Prep Batch

Analytical Batch

n/a GAB66

Run #2

CAS No. Compound Result

RDL

Units Q

106-93-4

1,2-Dibromoethane

ND

0.020 ug/l

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank



Page 1 of 1

Client Sample ID: 300-MW04-001

Lab Sample ID:

F582-2

Matrix:

AQ - Ground Water

Date Sampled: 04/23/97 Date Received: 04/25/97

Percent Solids: n/a

Project:

Site G300 CTO 0027

**Metals Analysis** 

Analyte

Result

RDL

Units DF Prep Analyzed By

Method

Lead

<0.0030 0.0030 mg/l

05/02/97 05/08/97 лк

EPA 239.2



Page 1 of 1

Client Sample ID: 300-MW01-001

Lab Sample ID:

F582-3

Matrix:

AQ - Ground Water

Method:

FLORIDA-PRO

Project:

Site G300 CTO 0027

Date Sampled: 04/23/97 Date Received: 04/25/97

Percent Solids: n/a

Run #1

File ID I01595.D DF Analyzed 2 05/02/97

Вy NF Prep Date 04/30/97

Prep Batch **OP89** 

**Analytical Batch** 

GIJ73

Run #2 CAS No.

Compound

Result

RDL

Units Q

TPH (C8-C40)

3.95 1.0

mg/l

CAS No. Surrogate Recoveries Run#1

Limits Run#2

84-15-1

o-Terphenyl

80%

40-140%

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank



Page 1 of 1

Client Sample ID: 300-MW01-001

Lab Sample ID: Matrix:

F582-3 AQ - Ground Water

Method:

Project:

**EPA 8100** 

Site G300 CTO 0027

**Date Sampled:** 04/23/97 Date Received: 04/25/97

Percent Solids: n/a

DF

File ID Run #1 * I01446.D

1

By NF

Analyzed

04/25/97

Prep Date 04/25/97

Prep Batch

**Analytical Batch** 

**OP83** GIJ68

Run #2

#### **BN PAH List**

CAS No.	Compound	Result	RDL	Units Q
83-32-9	Acenaphthene	ND	10	ug/l
208-96-8	Acenaphthylene	ND	10	ug/l
120-12-7	Anthracene	ND	10	ug/l
56-55-3	Benzo(a)anthracene	ND	10	ug/l
50-32-8	Benzo(a)pyrene	ND	10	ug/l
205-99-2	Benzo(b)fluoranthene	ND	10	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	10	ug/l
207-08-9	Benzo(k)fluoranthene	ND	10	ug/l
218-01-9	Chrysene	ND	10	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	10	ug/l
206-44-0	Fluoranthene	ND	10	ug/l
86-73-7	Fluorene	ND	10	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	10	ug/l
91-20-3	Naphthalene	33.6	10	ug/l
90-12-0	1-Methylnaphthalene	18.0	10	ug/l
91-57-6	2-Methylnaphthalene	24.1	10	ug/l
85-01-8	Phenanthrene	ND	10	ug/l
129-00-0	Pyrene	ND	10	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
321-60-8 84-15-1	2-Fluorobiphenyl o-Terphenyl	67 <i>%</i> 84 <i>%</i>		26-116 % 26-125 %

⁽a) All hits confirmed by dual column analysis.

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank



By

Page 2 of 2

Client Sample ID: 300-MW01-001

Lab Sample ID:

F582-3

AQ - Ground Water

Date Sampled: 04/23/97 Date Received: 04/25/97

Matrix: Method:

EPA 601/602

Percent Solids: n/a

Project:

Site G300 CTO 0027

DF

1

**Prep Date** Prep Batch **Analytical Batch** 

Run#1

File ID EF002008.D Analyzed 04/25/97

AW n/a

n/a GEF50

Run #2

**VOA PPL List** 

CAS No. Surrogate Recoveries Run# 1

Run#2 Limits

460-00-4

4-Bromofluorobenzene

99%

75-125%

(a) Confirmed by reanalysis on MS

ND = Not detected

RDL = Reported Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank

File ID

EF002008.D

## **Report of Analysis**

Ву

ΑW

Page 1 of 2

Client Sample ID: 300-MW01-001

Lab Sample ID:

F582-3

Matrix: Method: AQ - Ground Water

EPA 601/602

Project:

Site G300 CTO 0027

DF

1

Analyzed

04/25/97

**Date Sampled:** 04/23/97

Prep Date

n/a

Date Received: 04/25/97

Percent Solids: n/a

Prep Batch Analytical Batch

n/a GEF50

Run #1 Run #2

#### **VOA PPL List**

CAS No.	Compound	Result	RDL	Units Q
71-43-2	Benzene a	8.2	1.0	ug/l
75-25-2	Bromoform	ND	1.0	ug/l
75-27-4	Bromodichloromethane	ND	1.0	ug/l
74-83 <b>-</b> 9	Bromomethane	ND	1.0	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	ug/l
108-90-7	Chlorobenzene	ND	1.0	ug/l
75-00-3	Chloroethane	ND	1.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
74-87-3	Chloromethane	ND	1.0	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	ug/l
124-48-1	Dibromochloromethane	ND	1.0	ug/l
75-71-8	Dichlorodifluoromethane	ND	1.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane a	2.1	1.0	ug/l
75-35-4	1,1-Dichloroethene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethene	ND	1.0	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	ug/l
100-41-4	Ethylbenzene a	11.1	1.0	ug/l
75-09-2	Methylene chloride	ND	5.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethene	ND	1.0	ug/l
108-88-3	Toluene	ND	1.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	ug/l
79-01-6	Trichloroethene	ND	1.0	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l
75-01-4	Vinyl chloride	ND	1.0	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	ug/l
1330-20-7	Xylenes (total) a	6.7	3.0	ug/l
156-69-4	cis-1,2-Dichloroethene	ND	1.0	ug/l
540-59-0	1,2-Dichloroethene (total)	ND	2.0	ug/l

ND = Not detected

RDL = Reported Detection Limit E = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates that analyte is found in associated method blank